FREE BOOKS

Author's List




PREV.   NEXT  
|<   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84  
85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   >>   >|  
f beam or truss design, that is, from the standpoint of stress distribution, although this "juggling" is limited in practice by economical considerations. In a series of beams supported at the ends, bending moments range from (_w_ _l^{2}_)/8 at the center of each span to zero at the supports, and, in a series of cantilevers, from zero at the center of the span to (_w_ _l^{2}_)/8 at the supports. Between these two extremes, the designer can divide, adjust, or juggle them to his heart's content, provided that in his design he makes the proper provision for the corresponding shifting of the points of contra-flexure. If that were not the case, how could ordinary bridge trusses, which have their maximum bending at the center, compare with those which, like arches, are assumed to have no bending at that point? In his tenth point, the author proposes a method of simple designing by doing away with the complicated formulas which take account of the actual co-operation of the two materials. He states that an ideal design can be obtained in the same manner, that is, with the same formulas, as for ordinary rectangular beams; but, when he does so, he evidently fails to remember that the neutral axis is not near the center of a reinforced concrete beam under stress; in fact, with the percentage of reinforcement ordinarily used in designing--varying between three-fourths of 1% to 1-1/2%--the neutral axis, when the beam is loaded, is shifted from 26 to 10% of the beam depth above the center. Hence, a low percentage of steel reinforcement will produce a great shifting of the neutral axis, so that a design based on the formulas advocated by the author would contain either a waste of materials, an overstress of the concrete, or an understress of the steel; in fact, an error in the design of from 10 to 26 per cent. Such errors, indeed, are not to be recommended by good engineers. The last point which the speaker will discuss is that of the elastic arch. The theory of the elastic arch is now so well understood, and it offers such a simple and, it might be said, elegant and self-checking solution of the arch design, that it has a great many advantages, and practically none of the disadvantages of other methods. The author's statement that the segments of an arch could be made up of loose blocks and afterward cemented together, cannot be endorsed by the speaker, for, upon such cementing together, a shifting of the lines of resistanc
PREV.   NEXT  
|<   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84  
85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   >>   >|  



Top keywords:

design

 

center

 

author

 

neutral

 

formulas

 

shifting

 

bending

 

stress

 
elastic
 

series


ordinary

 

designing

 

simple

 

speaker

 

materials

 

concrete

 

supports

 
percentage
 

reinforcement

 

overstress


advocated
 

endorsed

 

understress

 

cementing

 

shifted

 

fourths

 

resistanc

 

loaded

 

produce

 

cemented


checking

 

solution

 

elegant

 
segments
 

methods

 
statement
 

disadvantages

 

advantages

 

practically

 

offers


varying

 
recommended
 
errors
 
engineers
 

afterward

 

understood

 
theory
 

blocks

 

discuss

 

content