FREE BOOKS

Author's List




PREV.   NEXT  
|<   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121  
122   123   124   125   126   127   128   129   130   131   132   133   >>  
takes the shear, it must give it back to the concrete beam from the point of its full usefulness to the support. Mr. Thacher would not say of a steel truss that the diagonal bars would take the shear, if these bars, in a deck truss, were attached to the top chord several feet away from the support, or if the end connection were good for only a fraction of the stress in the bars. Why does he not apply the same logic to reinforced concrete design? Answering the third point, Mr. Thacher makes more statements that are characteristic of current logic in reinforced concrete literature, which does not bother with premises. He says, "In a beam, the shear rods run through the compression parts of the concrete and have sufficient anchorage." If the rods have sufficient anchorage, what is the nature of that anchorage? It ought to be possible to analyze it, and it is due to the seeker after truth to produce some sort of analysis. What mysterious thing is there to anchor these rods? The writer has shown by analysis that they are not anchored sufficiently. In many cases they are not long enough to receive full anchorage. Mr. Thacher merely makes the dogmatic statement that they are anchored. There is a faint hint of a reason in his statement that they run into the compression part of the concrete. Does he mean that the compression part of the concrete will grip the rod like a vise? How does this comport with his contention farther on that the beams are continuous? This would mean tension in the upper part of the beam. In any beam the compression near the support, where the shear is greatest, is small; so even this hint of an argument has no force or meaning. In this same paragraph Mr. Thacher states, concerning the third point and the case of the retaining wall that is given as an example, "In a counterfort, the inclined rods are sufficient to take the overturning stress." Mr. Thacher does not make clear what he means by "overturning stress." He seems to mean the force tending to pull the counterfort loose from the horizontal slab. The weight of the earth fill over this slab is the force against which the vertical and inclined rods of Fig. 2, at _a_, must act. Does Mr. Thacher mean to state seriously that it is sufficient to hang this slab, with its heavy load of earth fill, on the short projecting ends of a few rods? Would he hang a floor slab on a few rods which project from the bottom of a girder? He says, "The proposed method
PREV.   NEXT  
|<   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121  
122   123   124   125   126   127   128   129   130   131   132   133   >>  



Top keywords:

Thacher

 

concrete

 

sufficient

 
compression
 
anchorage
 

stress

 

support

 
reinforced
 

anchored

 

analysis


counterfort

 

inclined

 

overturning

 
statement
 

paragraph

 

argument

 

meaning

 
continuous
 

farther

 
contention

comport

 
tension
 

states

 

greatest

 
projecting
 

girder

 

proposed

 

method

 

bottom

 

project


vertical

 

retaining

 

weight

 

horizontal

 
tending
 

design

 
Answering
 
fraction
 
statements
 

characteristic


premises

 

bother

 

current

 
literature
 

diagonal

 

usefulness

 

attached

 
connection
 

nature

 
receive