FREE BOOKS

Author's List




PREV.   NEXT  
|<   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30  
31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   >>   >|  
d concrete by its total absence. By stirrups are meant the so-called shear rods strung along a reinforcing rod. They are usually U-shaped and looped around the rod. It is a common practice to count these stirrups in the shear, taking the horizontal shear in a beam. In a plate girder, the rivets connecting the flange to the web take the horizontal shear or the increment to the flange stress. Compare two 3/4-in. rivets tightly driven into holes in a steel angle, with a loose vertical rod, 3/4 in. in diameter, looped around a reinforcing rod in a concrete beam, and a correct comparison of methods of design in steel and reinforced concrete, as they are commonly practiced, is obtained. These stirrups can take but little hold on the reinforcing rods--and this must be through the medium of the concrete--and they can take but little shear. Some writers, however, hold the opinion that the stirrups are in tension and not in shear, and some are bold enough to compare them with the vertical tension members of a Howe truss. Imagine a Howe truss with the vertical tension members looped around the bottom chord and run up to the top chord without any connection, or hooked over the top chord; then compare such a truss with one in which the end of the rod is upset and receives a nut and large washer bearing solidly against the chord. This gives a comparison of methods of design in wood and reinforced concrete, as they are commonly practiced. Anchorage or grip in the concrete is all that can be counted on, in any event, to take up the tension of these stirrups, but it requires an embedment of from 30 to 50 diameters of a rod to develop its full strength. Take 30 to 50 diameters from the floating end of these shear members, and, in some cases, nothing or less than nothing will be left. In any case the point at which the shear member, or stirrup, is good for its full value, is far short of the centroid of compression of the beam, where it should be; in most cases it will be nearer the bottom of the beam. In a Howe truss, the vertical tension members having their end connections near the bottom chord, would be equivalent to these shear members. The sixth point concerns the division of stress into shear members. Briefly stated, the common method is to assume each shear member as taking the horizontal shear occurring in the space from member to member. As already stated, this is absurd. If stirrups could take shear, this method would g
PREV.   NEXT  
|<   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30  
31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   >>   >|  



Top keywords:
members
 

stirrups

 

concrete

 
tension
 

member

 

vertical

 
reinforcing
 

horizontal

 

looped

 
bottom

commonly

 

design

 

comparison

 
methods
 
reinforced
 

compare

 

practiced

 

rivets

 
stress
 

taking


stated

 

common

 

method

 

flange

 

diameters

 

Anchorage

 

develop

 

floating

 

strength

 

requires


embedment

 

counted

 
occurring
 

connections

 

nearer

 
equivalent
 

concerns

 

Briefly

 

assume

 

compression


stirrup

 

absurd

 
division
 

centroid

 

increment

 
connecting
 

girder

 
Compare
 
diameter
 
tightly