FREE BOOKS

Author's List




PREV.   NEXT  
|<   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236  
237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   >>   >|  
ection on making the circuit, and in the opposite direction on breaking it, he establishes the fact that the current induced on making flows in the opposite direction to the inducing current, and that induced on breaking flows in the same direction as the inducing current. Having thus established the fact of current induction, he makes the step of substituting magnets for active circuits; a simple step in the light of our present knowledge, but a giant stride at that time. Remembering that current induction, or, as he called it, voltaic current induction, takes place only while some effect produced by the current is either increasing or decreasing, he moves coils of insulated wire towards or from magnet poles, or magnet poles towards or from coils of wire, and shows that electric currents are generated in the coils while either the coils or the magnets are in motion, but cease to be produced as soon as the motion ceases. Moreover, these magnetically induced currents differ in no respects from other currents,--for example, those produced by the voltaic pile,--since, like the latter, they produce sparks, magnetize bars of steel, or deflect the needle of a galvanometer. In this manner Faraday solved the great problem. He had produced electricity directly from magnetism! With, perhaps, the single exception of the discovery by Oersted, in 1820, of the invariable relation existing between an electric current and magnetism, this discovery of Faraday may be justly regarded as the greatest in this domain of physical science. These two master minds in scientific research wonderfully complemented each other. Oersted showed that an electric current is invariably attended by magnetic effects; Faraday showed that magnetic changes are invariably attended by electric currents. Before these discoveries, electricity and magnetism were necessarily regarded as separate branches of physical science, and were studied apart as separate phenomena. Now, however, they must be regarded as co-existing phenomena. The ignorance of the scientific world had unwittingly divorced what nature had joined together. In view of the great importance of Faraday's discovery, we shall be justified in inquiring, though somewhat briefly, into some of the apparatus employed in this historic research. Note its extreme simplicity. In one of his first successful experiments he wraps a coil of insulated wire around the soft iron bar that forms the armature or keep
PREV.   NEXT  
|<   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236  
237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   >>   >|  



Top keywords:

current

 

Faraday

 
electric
 

currents

 

produced

 
induction
 

regarded

 

direction

 

induced

 

magnetism


discovery

 

physical

 
motion
 

magnet

 
research
 
Oersted
 
showed
 

scientific

 

existing

 

science


invariably

 

attended

 
phenomena
 

separate

 

electricity

 

magnetic

 
insulated
 

opposite

 

inducing

 

magnets


breaking

 

voltaic

 

making

 

discoveries

 

effects

 

branches

 

Before

 
necessarily
 

experiments

 

master


armature

 

wonderfully

 
studied
 
complemented
 

historic

 

importance

 

extreme

 
employed
 

apparatus

 

justified