FREE BOOKS

Author's List




PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   >>  
rom wet places to dry places in the soil. Tie a piece of muslin over the end of a tube and fill with dry soil, tapping it down as much as you can, then stand the tube in water as in Fig. 30. Fill another with sand {68} and place in water. Notice that the water at once begins to rise in both tubes and will go on for a long time, always passing from the wet to the dry places. It rises higher in the soil than it does in the sand. Enough water may pass up the tube in this way to supply the needs of a growing plant. Fill a glass lamp chimney with dry soil, packing it down tightly, put into water and then sow with wheat. The plants grow very well. A longer tube may be made from two chimneys fastened together by means of a tin collar stuck on with Canada balsam or sealing wax (Fig. 31). Our plants grew well in this also, but on a sandier soil, where the water could not rise so high, it might happen that they would not. [Illustration: Fig. 31. Wheat growing in soils supplied from below with water. All the water the plant gets has to travel upwards] Thus we shall expect great differences in the moisture of various soils. In some districts there is much more rain than in others, and therefore the soils get a larger supply of water. Sandy soils allow water to run through while a loam holds it like a sponge, in a loam also the water readily moves from wet to dry places. Further, water runs down hills and collects in low-lying hollows or valleys; here, therefore, the soil is moister than it is somewhat higher up. What will be the effect of these moisture differences on plants? You must find out in two ways. Visit a soil that you know is dry--a sandy, gravelly or chalky soil in a high situation--and look carefully at the plants there, then go to some moister, lower ground and see what the plants show. You cannot be quite certain, however, that anything you see is simply due to water supply, because there may be other differences in the soil as well. So you must try the second method, and that is to find out by experiments what is the effect of varying {69} quantities of water on the plant growth. Both methods must be used, but it may be more convenient to start the experiments first, and while they are going on to collect observations in your rambles. [Illustration: Fig. 32. Mustard growing in soils supplied with varying quantities of water. 16 very little water, 3 a nice amount of water, 15 too much water
PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   >>  



Top keywords:
plants
 

places

 

differences

 
growing
 

supply

 

Illustration

 
supplied
 

moister

 

effect

 
higher

moisture

 

varying

 

experiments

 
quantities
 
hollows
 

collects

 

valleys

 

readily

 
Further
 

sponge


collect

 

convenient

 

growth

 

methods

 

observations

 

amount

 

rambles

 

Mustard

 

method

 

carefully


ground

 

situation

 
gravelly
 

chalky

 

larger

 
simply
 

Enough

 

passing

 

tightly

 

chimney


packing

 

tapping

 
muslin
 

begins

 

Notice

 
travel
 

upwards

 
happen
 
districts
 
expect