FREE BOOKS

Author's List




PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  
g will each piece be?" Several additional preliminary steps are required, none of which was involved in the problem in its original form. Before the length of the pieces can be computed he must find out the length of the bar. He must know what to measure it with, and in what terms, whether feet or inches, the problem should be stated. Again, if we say: "Lay this bar out to be cut in five equal lengths," another step--the measurement and marking for each cut--is added. Many variations might be introduced, each involving additional opportunities for the exercise of thought. It is through practice in solving problems of this kind that the pupil acquires what the employer called mathematical intelligence. It consists in the ability to note what elements are involved in the problems and to decide which process of arithmetic should be used in dealing with them. Once these decisions are made the succeeding arithmetical calculations are simple and easy. In technical terms the ability that is needed is the ability to generalize one's experiences. In every-day terms it is the ability to use what one knows. The work in applied mathematics should cover a wide range of problems worded in the language of the trades and constantly varied in order to establish as many points of contact as possible between the pupil's knowledge of mathematics and the use of mathematics in industrial life. Practical shop work is one of the best means to this end. The trouble with much of the shop work given in the schools is that it runs to hand craftmanship in which the object is to "make something" by methods long ago discarded in the industrial world, rather than to give the pupil exercise in the sort of thinking he will need to do after he goes to work. Successful teaching does not depend so much on the use of tools and materials as on the teacher's knowledge of the conditions surrounding industrial work and his ability to originate methods for vitalizing the instruction in its relation to industrial needs. MECHANICAL DRAWING At the present time the junior high school course provides for one hour a week of mechanical drawing. All the boys who may be expected to elect the industrial course can well afford to devote more time to drawing. For such boys no other subject in the curriculum, except perhaps applied mathematics, is of greater importance. In many of the trades the ability to work from drawings is indispensable and the man who does
PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  



Top keywords:

ability

 
industrial
 
mathematics
 

problems

 
knowledge
 
exercise
 
drawing
 

methods

 

trades

 

length


involved
 

additional

 

problem

 

applied

 
teaching
 
Successful
 

thinking

 

object

 

schools

 
craftmanship

discarded
 

trouble

 

Practical

 

MECHANICAL

 
devote
 

afford

 

expected

 
drawings
 

indispensable

 
importance

greater
 

subject

 

curriculum

 

mechanical

 

surrounding

 
originate
 

vitalizing

 

conditions

 

teacher

 
depend

materials

 

instruction

 

relation

 

school

 
junior
 

present

 

DRAWING

 
lengths
 

measurement

 

marking