FREE BOOKS

Author's List




PREV.   NEXT  
|<   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410  
411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   >>   >|  
case we do not get a true combination of the colours at all. When the mixed pigments are illuminated by white light, the yellow particles absorb the red and blue rays, but reflect the yellow along with a good deal of the neighbouring green and orange. The blue particles, on the other hand, absorb the red, orange and yellow, but reflect the blue and a good deal of green and violet. As much of the light is affected by several particles, most of the rays are absorbed except green, which is reflected by both pigments. Thus, the colour of the mixture is not a mixture of the colours yellow and blue, but the remainder of white light after the yellow and blue pigments have absorbed all they can. The effect can also be seen in coloured solutions. If two equal beams of white light are transmitted respectively through a yellow solution of potassium bichromate and a blue solution of copper sulphate in proper thicknesses, they can be compounded on a screen to an approximately white colour; but a single beam transmitted through both solutions appears green. Blue and yellow pigments would produce the effect of white only if very sparsely distributed. This fact is made use of in laundries, where cobalt blue is used to correct the yellow colour of linen after washing. Thomas Young suggested red, green and violet as the primary colours, but the subsequent experiments of J. Clerk Maxwell appear to show that they should be red, green and blue. Sir William Abney, however, assigns somewhat different places in the spectrum to the primary colours, and, like Young, considers that they should be red, green and violet. All other hues can be obtained by combining the three primaries in proper proportions. Yellow is derived from red and green. This can be done by superposition on a screen or by making a solution which will transmit only red and green rays. For this purpose Lord Rayleigh recommends a mixture of solutions of blue litmus and yellow potassium chromate. The litmus stops the yellow and orange light, while the potassium chromate stops the blue and violet. Thus only red and green are transmitted, and the result is a full compound yellow which resembles the simple yellow of the spectrum in appearance, but is resolved into red and green by a prism. The brightest yellow pigments are those which give both the pure and compound yellow. Since red and green produce yellow, and yellow and blue produce white, it follows that red, green and blue can
PREV.   NEXT  
|<   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410  
411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   >>   >|  



Top keywords:

yellow

 

pigments

 
violet
 

colours

 
solutions
 

orange

 

transmitted

 

potassium

 

solution

 

produce


colour

 
mixture
 

particles

 

absorb

 
effect
 
proper
 
screen
 

primary

 

spectrum

 
compound

reflect
 

litmus

 

absorbed

 

chromate

 
places
 
obtained
 

combining

 

considers

 

William

 

Maxwell


simple
 

assigns

 

primaries

 

proportions

 

brightest

 

transmit

 

purpose

 

Rayleigh

 

experiments

 
resolved

making

 
result
 
derived
 

Yellow

 

recommends

 
superposition
 

resembles

 
appearance
 

approximately

 
reflected