FREE BOOKS

Author's List




PREV.   NEXT  
|<   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409  
410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   >>   >|  
o that of another (see FLUORESCENCE). Besides the foregoing kinds of colorization, a body may exhibit, under certain circumstances, a colouring due to some special physical conditions rather than to the specific properties of the material; such as the colour of a white object when illuminated by light of some particular colour; the colours seen in a film of oil on water or in mother-of-pearl, or soap-bubbles, due to interference (q.v.); the colours seen through the eyelashes or through a thin handkerchief held up to the light, due to diffraction (q.v.); and the colours caused by ordinary refraction, as in the rainbow, double refraction and polarization (qq.v.). _Composition of Colours._--It has been already pointed out that white light is a combination of all the colours in the spectrum. This was shown by Newton, who recombined the spectral colours and produced white. Newton also remarks that if a froth be made on the surface of water thickened a little with soap, and examined closely, it will be seen to be coloured with all the colours of the spectrum, but at a little distance it looks white owing to the combined effect on the eye of all the colours. The question of the composition of colours is largely a physiological one, since it is possible, by mixing colours, say red and yellow, to produce a new colour, orange, which appears identical with the pure orange of the spectrum, but is physically quite different, since it can be resolved by a prism into red and yellow again. There is no doubt that the sensation of colour-vision is threefold, in the sense that any colour can be produced by the combination, in proper proportions, of three standard colours. The question then arises, what are the three primary colours? Sir David Brewster considered that they were red, yellow and blue; and this view has been commonly held by painters and others, since all the known brilliant hues can be derived from the admixture of red, yellow and blue pigments. For instance, vermilion and chrome yellow will give an orange, chrome yellow and ultramarine a green, and vermilion and ultramarine a purple mixture. But if we superpose the pure spectral colours on a screen, the resulting colours are quite different. This is especially the case with yellow and blue, which on the screen combine to produce white, generally with a pink tint, but cannot be made to give green. The reason of this difference in the two results is that in the former
PREV.   NEXT  
|<   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409  
410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   >>   >|  



Top keywords:

colours

 

yellow

 
colour
 

spectrum

 
orange
 

produce

 

refraction

 

produced

 

question

 

combination


Newton

 
spectral
 

screen

 

chrome

 
vermilion
 
ultramarine
 
resulting
 

vision

 

sensation

 
superpose

reason
 

appears

 

identical

 

difference

 
results
 
physically
 

resolved

 

combine

 

generally

 

purple


considered
 

Brewster

 

derived

 

brilliant

 

painters

 

commonly

 

primary

 

admixture

 

proper

 
proportions

mixture

 
standard
 
pigments
 

arises

 

instance

 
threefold
 

examined

 
object
 

illuminated

 
material