FREE BOOKS

Author's List




PREV.   NEXT  
|<   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29  
30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   >>   >|  
onate inconvenience, it can never be set aside entirely, as has been proved by experience. That men have set it aside in part, to their own loss, is sufficiently evidenced. Witness the heterogeneous mass of irregularities already pointed out. Of these our own coins present a familiar example. For the reasons above stated, coins, to be practical, should represent the powers of two; yet, on examination, it will be found, that, of our twelve grades of coins, only one-half are obtained by binary division, and these not in a regular series. Do not these six grades, irregular as they are, give to our coins their principal convenience? Then why do we claim that our coins are decimal? Are not their gradations produced by the following multiplications: 1 x 5 x 2 x 2-1/2 x 2 x 2 x 2-1/2 x 2 x 2 x 2, and 1 x 3 x 100? Are any of these decimal? We might have decimal coins by dropping all but cents, dimes, dollars, and eagles; but the question is not, What we might have, but, What have we? Certainly we have not decimal coins. A purely decimal system of coins would be an intolerable nuisance, because it would require a greatly increased number of small coins. This may be illustrated by means of the ancient Greek notation, using the simple signs only, with the exception of the second sign, to make it purely decimal. To express $9.99 by such a notation, only three signs can be used; consequently nine repetitions of each are required, making a total of twenty-seven signs. To pay it in decimal coins, the same number of pieces are required. Including the second Greek sign, twenty-three signs are required; including the compound signs also, only fifteen. By Roman notation, without subtraction, fifteen; with subtraction, nine. By alphabetic notation, three signs without repetition. By the Arabic, one sign thrice repeated. By Federal coins, nine pieces, one of them being a repetition. By dual coins, six pieces without a repetition, a fraction remaining. In the gradation of real weights, measures, and coins, it is important to adopt those grades which are most convenient, which require the least expense of capital, time, and labor, and which are least likely to be mistaken for each other. What, then, is the most convenient gradation? The base two gives a series of seven weights that may be used: 1, 2, 4, 8, 16, 32, 64 lbs. By these any weight from one to one hundred and twenty-seven pounds may be weighed. This is, perhaps, the smallest number
PREV.   NEXT  
|<   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29  
30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   >>   >|  



Top keywords:

decimal

 

notation

 

repetition

 

number

 
grades
 

twenty

 

required

 

pieces

 

gradation

 

weights


fifteen

 

subtraction

 

series

 
convenient
 
require
 
purely
 

compound

 

including

 

exception

 

Including


repetitions

 

making

 

express

 
mistaken
 

pounds

 

weighed

 
smallest
 
hundred
 

weight

 
Federal

simple
 

repeated

 
thrice
 

alphabetic

 
Arabic
 

fraction

 

remaining

 
expense
 

capital

 

important


measures

 
eagles
 

reasons

 

stated

 
practical
 

present

 

familiar

 

represent

 
twelve
 

examination