FREE BOOKS

Author's List




PREV.   NEXT  
|<   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153  
154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>  
_{4} in the other, each react with 2KMnO_{4}. These molecular quantities are therefore equivalent, and the factor becomes (10FeSO_{4}/5Na_{2}C_{2}O_{4}) or (2FeSO_{4}/Na_{2}C_{2}O_{4}) or (303.8/134). Again, let it be assumed that it is desired to determine the factor required for the conversion of a given weight of potassium permanganate (KMnO_{4}) into an equivalent weight of potassium bichromate (K_{2}Cr_{2}O_{7}), each acting as an oxidizing agent against ferrous sulphate. The reactions involved are: 10FeSO_{4} + 2KMnO_{4} + 8H_{2}SO_{4} --> 5Fe_{2}(SO_{4})_{3} + K_{2}SO_{4} + 2MnSO_{4} + 8H_{2}O, 6FeSO_{4} + K_{2}Cr_{2}O_{7} + 7H_{2}SO_{4} --> 3Fe_{2}(SO_{3})_{3} + K_{2}SO_{4} + Cr_{2}(SO_{4})_{3} + 7H_{2}O. An inspection of these equations shows that 2KMO_{4} react with 10FeSO_{4}, while K_{2}Cr_{2}O_{7} reacts with 6FeSO_{4}. These are not equivalent, but if the first equation is multiplied by 3 and the second by 5 the number of molecules of FeSO_{4} is then the same in both, and the number of molecules of KMnO_{4} and K_{2}Cr_{2}O_{7} reacting with these 30 molecules become 6 and 5 respectively. These are obviously chemically equivalent and the desired factor is expressed by the fraction (6KMnO_{4}/5K_{2}Cr_{2}O_{7}) or (948.0/1471.0). 3. It is sometimes necessary to calculate the value of solutions according to the principles just explained, when several successive reactions are involved. Such problems may be solved by a series of proportions, but it is usually possible to eliminate the common factors and solve but a single one. For example, the amount of MnO_{2} in a sample of the mineral pyrolusite may be determined by dissolving the mineral in hydrochloric acid, absorbing the evolved chlorine in a solution of potassium iodide, and measuring the liberated iodine by titration with a standard solution of sodium thiosulphate. The reactions involved are: MnO_{2} + 4HCl --> MnCl_{2} + 2H_{2}O + Cl_{2} Cl_{2} + 2KI --> I_{2} + 2KCl I_{2} + 2Na_{2}S_{2}O_{3} --> 2NaI + Na_{2}S_{4}O_{6} Assuming that the weight of thiosulphate corresponding to the volume of sodium thiosulphate solution used is known, what is the corresponding weight of manganese dioxide? From the reactions given above, the following proportions may be stated: 2Na_{2}S_{2}O_{3}:I_{2} = 316.4:253.9, I_{2}:Cl_{2} = 253.9:71, Cl_{2}:MnO_{2} = 71:86.9. After canceling the common factors, there remains 2Na_{2}S_{2}O_{3}:MnO_{2}
PREV.   NEXT  
|<   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153  
154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>  



Top keywords:

reactions

 
weight
 

equivalent

 
solution
 

molecules

 

potassium

 

involved

 

factor

 

10FeSO

 

thiosulphate


mineral

 

sodium

 
number
 

factors

 

desired

 

common

 
proportions
 

determined

 
dissolving
 

pyrolusite


solved
 

problems

 

hydrochloric

 

eliminate

 

amount

 

single

 

absorbing

 

sample

 

successive

 

series


dioxide

 

manganese

 

stated

 
remains
 
canceling
 

volume

 

iodine

 
titration
 

liberated

 

measuring


chlorine

 

iodide

 

standard

 

Assuming

 

evolved

 
oxidizing
 

acting

 
bichromate
 

ferrous

 

sulphate