FREE BOOKS

Author's List




PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>  
mes in immediate combination. This raises the question how such combination into propositions comes about. 4.2211 Even if the world is infinitely complex, so that every fact consists of infinitely many states of affairs and every state of affairs is composed of infinitely many objects, there would still have to be objects and states of affairs. 4.23 It is only in the nexus of an elementary proposition that a name occurs in a proposition. 4.24 Names are the simple symbols: I indicate them by single letters ('x', 'y', 'z'). I write elementary propositions as functions of names, so that they have the form 'fx', 'O (x,y)', etc. Or I indicate them by the letters 'p', 'q', 'r'. 4.241 When I use two signs with one and the same meaning, I express this by putting the sign '=' between them. So 'a = b' means that the sign 'b' can be substituted for the sign 'a'. (If I use an equation to introduce a new sign 'b', laying down that it shall serve as a substitute for a sign a that is already known, then, like Russell, I write the equation--definition--in the form 'a = b Def.' A definition is a rule dealing with signs.) 4.242 Expressions of the form 'a = b' are, therefore, mere representational devices. They state nothing about the meaning of the signs 'a' and 'b'. 4.243 Can we understand two names without knowing whether they signify the same thing or two different things?--Can we understand a proposition in which two names occur without knowing whether their meaning is the same or different? Suppose I know the meaning of an English word and of a German word that means the same: then it is impossible for me to be unaware that they do mean the same; I must be capable of translating each into the other. Expressions like 'a = a', and those derived from them, are neither elementary propositions nor is there any other way in which they have sense. (This will become evident later.) 4.25 If an elementary proposition is true, the state of affairs exists: if an elementary proposition is false, the state of affairs does not exist. 4.26 If all true elementary propositions are given, the result is a complete description of the world. The world is completely described by giving all elementary propositions, and adding which of them are true and which false. For n states of affairs, there are possibilities of existence and non-existence. Of these states of affairs any combination can exist and the remainder not exi
PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>  



Top keywords:

elementary

 

affairs

 

proposition

 

propositions

 

meaning

 

states

 

combination

 

infinitely

 

knowing

 

understand


definition

 

equation

 

Expressions

 

objects

 

letters

 

existence

 

German

 

impossible

 
adding
 

remainder


English

 
unaware
 

things

 

possibilities

 

signify

 

Suppose

 

exists

 

evident

 

capable

 
translating

completely
 

giving

 

derived

 

result

 
complete
 
description
 
substituted
 

simple

 
occurs
 

symbols


single

 

functions

 

question

 

raises

 

composed

 

consists

 

complex

 

Russell

 

substitute

 

dealing