FREE BOOKS

Author's List




PREV.   NEXT  
|<   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85  
86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  
0 lb. That is a very great difference, and, since weight is of the greatest importance, the design of an aeroplane is always such as to, as far as possible, keep the various wooden parts of its construction in direct compression. Weight being of such vital importance, and designers all trying to outdo each other in saving weight, it follows that the factor of safety is rather low in an aeroplane. The parts in direct compression will, however, take the stresses safely provided the following conditions are carefully observed. CONDITIONS TO BE OBSERVED: 1. All the spars and struts must be perfectly straight. The above sketch illustrates a section through an interplane strut. If the strut is to be kept straight, i.e., prevented from bending, then the stress of compression must be equally disposed about the centre of strength. If it is not straight, then there will be more compression on one side of the centre of strength than on the other side. That is a step towards getting compression on one side and tension on the other side, in which case it may be forced to take a bending stress for which it is not designed. Even if it does not collapse it will, in effect, become shorter, and thus throw out of adjustment the gap and all the wires attached to the top and bottom of the strut, with the result that the flight efficiency of the aeroplane will be spoiled. The only exception to the above condition is what is known as the Arch. For instance, in the case of the Maurice Farman, the spars of the centre-section plane, which have to take the weight of the nacelle, are arched upwards. If this was not done, it is possible that rough landings might result in the weight causing the spars to become slightly distorted downwards. That would produce a dangerous bending stress, but, as long as the wood is arched, or, at any rate, kept from bending downwards, it will remain in direct compression and no danger can result. 2. Struts and spars must be symmetrical. By that I mean that the cross-sectional dimensions must be correct, as otherwise there will be bulging places on the outside, with the result that the stress will not be evenly disposed about the centre of strength, and a bending stress may be produced. 3. Struts, spars, etc., must be undamaged. Remember that, from what I have already explained about bending stresses, the outside fibres of the wood are doing by far the most work. If these get bruised or scored, th
PREV.   NEXT  
|<   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85  
86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  



Top keywords:
bending
 

compression

 

stress

 
result
 

centre

 

weight

 

aeroplane

 

strength

 

straight

 

direct


disposed

 
Struts
 

importance

 
section
 
stresses
 

arched

 

condition

 

distorted

 

spoiled

 

efficiency


exception

 

slightly

 

nacelle

 

landings

 

Farman

 
upwards
 

instance

 

causing

 

Maurice

 

undamaged


Remember

 

explained

 
places
 

evenly

 

produced

 

fibres

 

bruised

 

scored

 

bulging

 

flight


remain
 
dangerous
 

danger

 

sectional

 

dimensions

 
correct
 

symmetrical

 
produce
 
conditions
 

carefully