FREE BOOKS

Author's List




PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   >>   >|  
to velocity OR climb. OPTIMUM ANGLE (Thrust horizontal) The velocity is less than at the smaller minimum angle, and, as aeroplanes are designed to-day, the area and angle of incidence of the surface is such as to secure a slight ascent at a low altitude. The camber of the surface is designed for this angle of incidence and velocity. The lift-drift ratio is best at this angle. BEST CLIMBING ANGLE The velocity is now still less by reason of the increased angle producing increase of drift. Less velocity at A GIVEN ANGLE produces less lift, but the increased angle more or less offsets the loss of lift due to the decreased velocity, and in addition, the thrust is now hauling the aeroplane upwards. MAXIMUM ANGLE The greater angle has now produced so much drift as to lessen the velocity to a point where the combined lifts from the surface and from the thrust are only just able to maintain horizontal flight. Any greater angle will result in a still lower lift-drift ratio. The lift will then become less than the weight and the aeroplane will consequently fall. Such a fall is known as "stalling" or "pancaking." NOTE.--The golden rule for beginners: Never exceed the Best Climbing Angle. Always maintain the flying speed of the aeroplane. By this means, when the altitude is reached where the margin of lift disappears (on account of loss of engine power), and which is, consequently, the altitude where it is just possible to maintain horizontal flight, the aeroplane is flying with its thrust horizontal and with maximum efficiency (as distinct from engine and propeller efficiency). The margin of lift at low altitude, and when the thrust is horizontal, should then be such that the higher altitude at which the margin of lift is lost is that altitude at which most of the aeroplane's horizontal flight work is done. That ensures maximum velocity when most required. Unfortunately, where aeroplanes designed for fighting are concerned, the altitude where most of the work is done is that at which both maximum velocity and maximum margin of lift for power are required. Perhaps some day a brilliant inventor will design an aeroplane of reasonable weight and drift of which it will be possible for the pilot to vary at will the above-mentioned opposing essentials. Then we shall get maximum velocity, or maximum margin of lift, for power as required. Until then the design of the aeroplane must remain a compromise between Velo
PREV.   NEXT  
|<   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71  
72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   >>   >|  



Top keywords:

velocity

 

aeroplane

 

altitude

 

horizontal

 

maximum

 

margin

 
thrust
 

required

 

flight

 

maintain


surface
 

designed

 

weight

 

design

 

greater

 

incidence

 

aeroplanes

 

efficiency

 
engine
 

flying


increased

 
reached
 

distinct

 

disappears

 

minimum

 
propeller
 

smaller

 
Thrust
 

account

 

OPTIMUM


higher

 

essentials

 

mentioned

 

opposing

 

compromise

 

remain

 

concerned

 
fighting
 

Unfortunately

 

ensures


Perhaps
 
reasonable
 

inventor

 
brilliant
 
addition
 
secure
 

decreased

 

slight

 

offsets

 

hauling