FREE BOOKS

Author's List




PREV.   NEXT  
|<   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267  
268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   >>   >|  
bly arose from the coalescence of rows of parapodia. Dohrn assumed also that the primitive Annelid ancestor must have possessed a notochord to give support in swimming. If Vertebrates arose from primitive Annelid ancestors, how account for Amphioxus and the Ascidians, which seem to be the most primitive living Vertebrates and yet show no particular annelidan affinities? Dohrn tries to answer this awkward question by showing that these forms are not primitive but degenerate. He points out first that Cyclostomes are degenerate fish, half specialised and half degraded in adaptation to a parasitic mode of life. He thinks that if an _Ammocoetes_ were to become sexually mature and degenerate still further, forms would result which would resemble Amphioxus, and ultimately, if the process of degeneration went far enough, larval Ascidians. Amphioxus therefore might well be considered an extremely simplified and degenerate Cyclostome, and the ascidian larva the last term of this degeneration-series. Both Amphioxus and the Ascidians would accordingly be descended from fish, instead of fish being evolved from them. Dohrn conceived that the transformation of the Annelid into the Vertebrate took place mainly by reason of an important transforming principle, which he calls the principle of function-change. Each organ, Dohrn thinks, has besides its principal function a number of subsidiary functions which only await an opportunity to become active. "The transformation of an organ takes place by reason of the succession of the functions which one and the same organ possesses. Each function is a resultant of several components, of which one is the principal or primary function, while the others are the subsidiary or secondary functions. The weakening of the principal function and the strengthening of a subsidiary function alters the total function; the subsidiary function gradually becomes the chief function, the total function becomes quite different, and the consequence of the whole process is the transformation of the organ" (p. 60). Examples of function-change are not difficult to find. Thus the stomach in most Vertebrates performs both a chemical and a mechanical function, but in some forms a part of it specialises in the mechanical side of the work and becomes a gizzard, while the remaining part confines its energies to the secretion of the gastric juice. So, too, it is through function-change that certain of the ambulatory app
PREV.   NEXT  
|<   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267  
268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   >>   >|  



Top keywords:

function

 

Amphioxus

 
subsidiary
 

degenerate

 

primitive

 
functions
 

Ascidians

 

transformation

 

change

 

Annelid


Vertebrates

 

principal

 
thinks
 

principle

 
degeneration
 
process
 
reason
 

mechanical

 

secretion

 

energies


opportunity

 

active

 
remaining
 

gizzard

 

succession

 

confines

 
number
 

ambulatory

 

transforming

 

important


gastric

 

specialises

 

gradually

 

performs

 

stomach

 

difficult

 

consequence

 
Examples
 

alters

 

components


resultant

 

possesses

 
primary
 
weakening
 

strengthening

 

secondary

 

chemical

 
extremely
 

annelidan

 

affinities