FREE BOOKS

Author's List




PREV.   NEXT  
|<   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125  
126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   >>   >|  
, the connective tissues, and the nerves belonging to these. In order to have a convenient term for future use, I have named this layer the muscle-layer" (p. 153). The process of delamination results then in the formation of four layers, of which the upper two (composing the "animal" or "serous" layer) will give origin to the animal (neuromuscular) part of the body, the lower pair to the plastic or vegetative organs. The uppermost layer will form the external covering of the embryo, and also the amniotic folds; from it there differentiates out at a very early stage the rudiment of the central nervous system, forming a more or less independent layer. Below the outermost layer lies the layer from which are formed the muscular and skeletal systems, and beneath this "muscle-layer" comes the "vessel-layer," which gives origin to the main blood-vessels. The innermost layer of the four will form the mucous membrane of the alimentary canal and its dependencies; at the present stage, however, it is, like the other layers, a flat plate. From all these layers tubes are developed by the simple bending round of their edges. The outermost layer becomes the investing skin-tube of the embryo; the layer for the nervous system forms the tubular rudiment of the brain and spinal cord; the mucous layer curls round to form the alimentary tube; the muscle layer grows upwards and downwards to form the fleshy and osseous tube of the body wall; even the vessel layer forms a tube investing the alimentary canal, but a part of it goes to form the medial "Gekroese," or mesenterial complex, which departs considerably from the tubular form. When these tubes or "fundamental organs" are formed the process of primary differentiation is complete. The fundamental organs, however, have at no time actually the form of tubes; they exist as tubes only ideally, for morphological and histological differentiation go on concurrently with the process of primary differentiation. Through morphological differentiation the various parts of the fundamental organs become specialised, through unequal growth, first into the primitive organs and then into the functional organs of the body. "Single sections of the tubes originally formed from the layers develop individual forms, which later acquire special functions: these functions are in the most general way subordinate elements of the function of the whole tube, but yet differ from the functions of other sections
PREV.   NEXT  
|<   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125  
126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   >>   >|  



Top keywords:

organs

 

layers

 

differentiation

 
formed
 
muscle
 

process

 

alimentary

 
fundamental
 

functions

 

embryo


outermost

 

system

 

nervous

 
rudiment
 

primary

 

morphological

 

sections

 
tubular
 

investing

 
vessel

mucous

 
animal
 

origin

 

convenient

 
complete
 

ideally

 

belonging

 

departs

 

fleshy

 

osseous


upwards

 

complex

 

histological

 

considerably

 
mesenterial
 

Gekroese

 
medial
 
concurrently
 
acquire
 

special


connective

 

individual

 

originally

 
develop
 

general

 

differ

 

function

 
elements
 

subordinate

 
tissues