FREE BOOKS

Author's List




PREV.   NEXT  
|<   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134  
135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   >>   >|  
oint, according to the lower or higher goal it has to reach. One important consequence for morphology results from von Baer's laws of differentiation within the type. If the embryo develops from the general to the special, then the state in which each organ or organ-system first appears must represent the general or typical state of that organ within the group. Embryology will therefore be of great assistance to comparative anatomy, whose chief aim it is to discover the generalised type, the common plan of structure, upon which the animals of each big group are built. And the surest way to determine the true homologies of parts will be to study their early development. "For since each organ becomes what it is only through the manner of its development, its true value can be recognised only from its method of formation. At present, we form our judgments by an undefined intuition, instead of regarding each organ merely as an isolated product of its fundamental organ, and discerning from this standpoint the correspondences and dissimilarities in the different types" (p. 233). Parts, therefore, which develop from the same "fundamental organ," and in the last resort from the same germ-layer, have a certain kinship, which may even reach the degree of exact homology. Now since the mode of development in each type is peculiar to that type, organs of the same name in different types must not necessarily be accounted homologous, even if they correspond exactly with one another in their general _functional_ relations to the rest of the organs. Thus the central nervous system of Arthropods must not be homologised with the central nervous system of Vertebrates, for it develops in a different manner. So, too, the brain of Arthropods or of Mollusca is not strictly comparable with the brain of Vertebrates. Again, the air-tubes or tracheae of insects are, like the trachea and bronchi of many Vertebrates, air-breathing organs. But the two organs are not homologous, for the air-tubes of Vertebrates are developed from the alimentary tube ("fundamental organ" of the alimentary system, developed from the vegetative layer), while the air-tubes of insects arise either by histological differentiation, or by invagination of the skin (p. 236). Organs can be homologous only within the limits of the big groups; there can be no question of homology between members of different types. The development of plants, like the development of animals, i
PREV.   NEXT  
|<   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134  
135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   >>   >|  



Top keywords:

development

 

organs

 

system

 
Vertebrates
 
fundamental
 

homologous

 

general

 
developed
 

animals

 

alimentary


manner

 

Arthropods

 

central

 
homology
 

insects

 

nervous

 

develops

 
differentiation
 

Mollusca

 
relations

functional

 
morphology
 

important

 

homologised

 
consequence
 

results

 

peculiar

 

degree

 

necessarily

 

correspond


strictly

 

accounted

 

Organs

 

limits

 
invagination
 

histological

 
groups
 
plants
 
members
 

question


trachea

 

bronchi

 

higher

 
tracheae
 

breathing

 

vegetative

 

comparable

 
Embryology
 

formation

 
present