FREE BOOKS

Author's List




PREV.   NEXT  
|<   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164  
165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   >>   >|  
quid becomes continuous. Thus there will result a molten shell containing a gaseous nucleus equally dense with itself at their surface of contact and more dense at the centre--a molten shell which will slowly thicken by additions to both exterior and interior. That a solid crust will eventually form on this molten shell may be reasonably concluded. To the demurrer that solidification cannot commence at the surface, because the solids formed would sink, there are two replies. The first is that various metals expand while solidifying, and therefore would float. The second is that since the envelope of the supposed spheroid would consist of the gases and non-metallic elements, compounds of these with the metals and with one another would continually accumulate on the molten shell; and the crust, consisting of oxides, chlorides, sulphurets, and the rest, having much less specific gravity than the molten shell, would be readily supported by it. Clearly a planet thus constituted would be in an unstable state. Always it would remain liable to a catastrophe resulting from change in its gaseous nucleus. If, under some condition of pressure and temperature eventually reached, the components of this suddenly entered into one of those proto-chemical combinations forming a new element, there might result an explosion capable of shattering the entire planet, and propelling its fragments in all directions with high velocities. If the hypothetical planet between Jupiter and Mars was intermediate in size as in position, it would apparently fulfil the conditions under which such a catastrophe might occur. NOTE IV. The argument set forth in the foregoing note, is in part designed to introduce a question which seems to require re-consideration--the origin of the minor planets or planetoids. The hypothesis of Olbers, as propounded by him, implied that the disruption of the assumed planet between Mars and Jupiter had taken place at no very remote period in the past; and this implication was shown to be inadmissible by the discovery that there exists no such point of intersection of the orbits of the planetoids as the hypothesis requires. The inquiry whether, in the past, there was any nearer approach to a point of intersection than at present, having resulted in a negative, it is held that the hypothesis must be abandoned. It is, however, admitted that the mutual perturbations of the planetoids themselves would suffice, in the course
PREV.   NEXT  
|<   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164  
165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   >>   >|  



Top keywords:

molten

 

planet

 

hypothesis

 

planetoids

 

Jupiter

 

intersection

 

metals

 

eventually

 

nucleus

 
result

surface

 
catastrophe
 
gaseous
 

conditions

 
element
 

argument

 

designed

 

foregoing

 
forming
 

capable


intermediate

 

directions

 

hypothetical

 
velocities
 
fragments
 

propelling

 

apparently

 

fulfil

 

position

 

shattering


entire

 
explosion
 

assumed

 

nearer

 

approach

 

present

 

resulted

 

inquiry

 
discovery
 

exists


orbits
 
requires
 

negative

 

perturbations

 

suffice

 

mutual

 

admitted

 
abandoned
 

inadmissible

 
planets