FREE BOOKS

Author's List




PREV.   NEXT  
|<   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169  
170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   >>   >|  
t of the 13 largest planetoids whose apparent brightnesses exceed that of a star of the 9.5 magnitude, there is not one having a mean distance that exceeds 3. Of those having magnitudes at least 9.5 and smaller than 10, there are 15; and of these one only has a mean distance greater than 3. Of those between 10 and 10.5 there are 17; and of these also there is one exceeding 3 in mean distance. In the next group there are 37, and of these 5 have this great mean distance. The next group, 48, contains 12 such; the next, 47, contains 13 such. Of those of the twelfth magnitude and fainter, 72 planetoids have been discovered, and of those of them of which the orbits have been computed, no fewer than 23 have a mean distance exceeding 3 in terms of the Earth's. It is evident from this how comparatively erratic are the fainter members of the extensive family with which we are dealing. (4) To illustrate the next point, it may be noted that among the planetoids whose sizes have been approximately measured, the orbits of the two largest, Vesta and Ceres, have eccentricities falling between .05 and .10, whilst the orbits of the two smallest, Menippe and Eva, have eccentricities falling between .20 and .25, and between .30 and .35. And then among those more recently discovered, having diameters so small that measurement of them has not been practicable, come the extremely erratic ones,--Hilda and Thule, which have mean distances of 3.97 and 4.25 respectively; AEthra, having an orbit so eccentric that it cuts the orbit of Mars; and Medusa, which has the smallest mean distance from the Sun of any. (5) If the average eccentricities of the orbits of the planetoids grouped according to their decreasing sizes are compared, no very definite results are disclosed, excepting this, that the eight Polyhymnia, Atalanta, Eurydice, AEthra, Eva, Andromache, Istria, and Eudora, which have the greatest eccentricities (falling between .30 and .38), are all among those of smallest star-magnitudes. Nor when we consider the inclinations of the orbits do we meet with obvious verifications; since the proportion of highly-inclined orbits among the smaller planetoids does not appear to be greater than among the others. But consideration shows that there are two ways in which these last comparisons are vitiated. One is that the inclinations are measured from the plane of the ecliptic, instead of being measured from the plane of the orbit of the hypothetical pla
PREV.   NEXT  
|<   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169  
170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   >>   >|  



Top keywords:
orbits
 

distance

 
planetoids
 

eccentricities

 
smallest
 

measured

 

falling

 
fainter
 

erratic

 

magnitude


inclinations
 

discovered

 

largest

 

exceeding

 

greater

 
smaller
 

magnitudes

 
AEthra
 
Atalanta
 

eccentric


results

 

Polyhymnia

 

excepting

 

disclosed

 

grouped

 

Medusa

 

average

 

definite

 

compared

 

decreasing


consideration
 

comparisons

 

hypothetical

 
ecliptic
 

vitiated

 

inclined

 

highly

 

greatest

 
Eudora
 
Andromache

Istria

 

proportion

 
verifications
 

obvious

 

Eurydice

 

computed

 

extensive

 

family

 

members

 

comparatively