FREE BOOKS

Author's List




PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  
s keeping the rest of the circuit untouched, merely moving the clamp from the left, past the balancing point to the right, we get either a positive, or zero, or negative, resultant effect. In tin the current of response is from the less to the more excited point. In the retina also, we found the current of action flowing from the less stimulated to the more stimulated, and as that is known as a positive response, we shall consider the normal response of tin to be in like manner positive. Just as the response of retina or nerve, under certain molecular conditions, undergoes reversal, the positive being then converted into negative, and negative into positive, so it will be shown that the response in metallic wires under certain conditions is found to undergo reversal. #Anomalies of present terminology.#--When there is no current of injury, a particular current of response can hardly be called a negative, or positive, _variation_. Such nomenclature is purely arbitrary, and leads, as will be shown, to much confusion. A more definite terminology, free from misunderstanding, would be, as already said, to regard the current towards the more stimulated as positive, and that towards the less stimulated, in tissue or wire, as negative. The stimulated end of tin, say the end A, thus becomes zincoid, i.e. the current through the electrolyte (non-polarisable electrodes with interposed galvanometer) is from A to B, and _through the wire_, from the less stimulated B to the more stimulated A. Conversely, when B is stimulated, the action current flows round the circuit in an opposite direction. This positive is the most usual form of response, but there are cases where the response is negative. In order to show that normally speaking a stimulated wire becomes zincoid, and also to show once more the anomalies into which we may fall by adopting no more definite terminology than that of negative variation, I have devised the following experiment (fig. 51). Let us take a bar, one half of which is zinc and the other half copper, clamped in the middle, so that a disturbance produced at one end may not reach the other; the two ends are connected to a galvanometer through non-polarisable electrodes. The current through the electrolyte (non-polarisable electrodes and interposed galvanometer) will then flow from left to right. We must remember that metals under stimulation generally be
PREV.   NEXT  
|<   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79  
80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>   >|  



Top keywords:

stimulated

 
current
 

response

 

positive

 

negative

 

galvanometer

 
electrodes
 
terminology
 

polarisable

 
reversal

interposed

 

definite

 

zincoid

 

electrolyte

 

variation

 

conditions

 

circuit

 

action

 
retina
 

direction


remember

 

metals

 

generally

 

stimulation

 
opposite
 

connected

 
copper
 

experiment

 

clamped

 
devised

Conversely

 

speaking

 

produced

 

disturbance

 

adopting

 

middle

 
anomalies
 

normal

 

flowing

 

manner


converted

 

undergoes

 

molecular

 

excited

 
effect
 
moving
 

untouched

 

keeping

 
resultant
 

balancing