FREE BOOKS

Author's List




PREV.   NEXT  
|<   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57  
58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   >>   >|  
tion of balloons, but usually the much cheaper coal gas is substituted for it. Even hot air is often used when the duration of ascension is very short. It has been used also as a source of heat and light in the oxyhydrogen blowpipe. Where the electric current is available, however, this form of apparatus has been displaced almost entirely by the electric light and electric furnace, which are much more economical and more powerful sources of light and heat. EXERCISES 1. Will a definite weight of iron decompose an unlimited weight of steam? 2. Why is oxygen passed through the inner tube of the oxyhydrogen blowpipe rather than the outer? 3. In Fig. 14, will the flame remain at the mouth of the tube? 4. From Fig. 15, suggest a way for determining experimentally the quantity of water formed in the reaction. 5. Distinguish clearly between the following terms: oxidation, reduction, combustion, and kindling temperature. 6. Is oxidation always accompanied by reduction? 7. What is the source of heat in the lime light? What is the exact use of lime in this instrument? 8. In Fig. 12, why is it necessary to dry the hydrogen by means of the calcium chloride in the tube X? 9. At what pressure would the weight of 1 l. of hydrogen be equal to that of oxygen under standard conditions? 10. (a) What weight of hydrogen can be obtained from 150 g. of sulphuric acid? (b) What volume would this occupy under standard conditions? (c) The density of sulphuric acid is 1.84. What volume would the 150 g. of the acid occupy? 11. How many liters of hydrogen can be obtained from 50 cc. of sulphuric acid having a density of 1.84? 12. Suppose you wish to fill five liter bottles with hydrogen, the gas to be collected over water in your laboratory, how many cubic centimeters of sulphuric acid would be required? CHAPTER IV COMPOUNDS OF HYDROGEN AND OXYGEN; WATER AND HYDROGEN DIOXIDE WATER ~Historical.~ Water was long regarded as an element. In 1781 Cavendish showed that it is formed by the union of hydrogen and oxygen. Being a believer in the phlogiston theory, however, he failed to interpret his results correctly. A few years later Lavoisier repeated Cavendish's experiments and showed that water must be regarded as a compound of hydrogen and oxygen. ~General methods employed for the determination of the composition of a compound.~ The composition of a compound may be determined by either of two general p
PREV.   NEXT  
|<   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57  
58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   >>   >|  



Top keywords:

hydrogen

 

weight

 
oxygen
 

sulphuric

 

compound

 

electric

 

reduction

 
oxidation
 

formed

 

Cavendish


showed

 

regarded

 

density

 
HYDROGEN
 
obtained
 

conditions

 

standard

 
occupy
 

volume

 

oxyhydrogen


blowpipe
 

composition

 
source
 

liters

 

Suppose

 

experiments

 

employed

 

methods

 

Lavoisier

 
bottles

repeated

 

determination

 

collected

 
element
 

DIOXIDE

 
Historical
 
interpret
 

believer

 

phlogiston

 
determined

failed

 
results
 
centimeters
 

laboratory

 

theory

 

general

 

required

 
CHAPTER
 
General
 

OXYGEN