FREE BOOKS

Author's List




PREV.   NEXT  
|<   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230  
231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   >>   >|  
assium chloride is added, and as the solution cools the sparingly soluble potassium chlorate crystallizes out: Ca(ClO_{3})_{2} + 2KCl = 2KClO_{3} + CaCl_{2}. Electro-chemical processes are also used. ~Potassium nitrate~ (_saltpeter_) (KNO_{3}). This salt was formerly made by allowing animal refuse to decompose in the open air in the presence of wood ashes or earthy materials containing potassium. Under these conditions the nitrogen in the organic matter is in part converted into potassium nitrate, which was obtained by extracting the mass with water and evaporating to crystallization. This crude and slow process is now almost entirely replaced by a manufacturing process in which the potassium salt is made from Chili saltpeter: NaNO_{3} + KCl = NaCl + KNO_{3}. This process has been made possible by the discovery of the Chili niter beds and the potassium chloride of the Stassfurt deposits. The reaction depends for its success upon the apparently insignificant fact that sodium chloride is almost equally soluble in cold and hot water. All four factors in the equation are rather soluble in cold water, but in hot water sodium chloride is far less soluble than the other three. When hot saturated solutions of sodium nitrate and potassium chloride are brought together, sodium chloride precipitates and can be filtered off, leaving potassium nitrate in solution, together with some sodium chloride. On cooling, potassium nitrate crystallizes out, leaving small amounts of the other salts in solution. Potassium nitrate is a colorless salt which forms very large crystals. It is stable in the air, and when heated is a good oxidizing agent, giving up oxygen quite readily. Its chief use is in the manufacture of gunpowder. ~Gunpowder.~ The object sought for in the preparation of gunpowder is to secure a solid substance which will remain unchanged under ordinary conditions, but which will explode readily when ignited, evolving a large volume of gas. When a mixture of carbon and potassium nitrate is ignited a great deal of gas is formed, as will be seen from the equation 2KNO_{3} + 3C = CO_{2} + CO + N_{2} + K_{2}CO_{3}. By adding sulphur to the mixture the volume of gas formed in the explosion is considerably increased: 2KNO_{3} + 3C + S = 3CO_{2} + N_{2} + K_{2}S. Gun
PREV.   NEXT  
|<   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230  
231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   >>   >|  



Top keywords:

potassium

 

nitrate

 
chloride
 

sodium

 

soluble

 
process
 

solution

 

formed

 

gunpowder

 

conditions


ignited

 

readily

 
mixture
 

volume

 
equation
 
leaving
 
crystallizes
 

saltpeter

 

Potassium

 

oxidizing


heated

 

manufacture

 
oxygen
 

Electro

 

chemical

 

giving

 
processes
 

cooling

 

amounts

 

crystals


colorless

 

stable

 

sought

 

sparingly

 

chlorate

 

adding

 

assium

 
increased
 

considerably

 

sulphur


explosion

 

carbon

 
substance
 
secure
 

preparation

 

object

 

filtered

 
remain
 

unchanged

 

evolving