FREE BOOKS

Author's List




PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  
sulphur is contained in wool, fur, and hair, and not in silk nor in vegetable fibres. First, I will heat strongly some cotton with a little soda-lime in a tube, and hold a piece of moistened red litmus paper over the mouth of the tube. If nitrogen is present it will take up hydrogen in the decomposition ensuing, and escape as ammonia, which will turn the red litmus paper blue. With the cotton, however, no ammonia escapes, no turning of the piece of red litmus paper blue is observed, and so no nitrogen can be present in the cotton fibre. Secondly, I will similarly treat some silk. Ammonia escapes, turns the red litmus paper blue, possesses the smell like hartshorn, and produces, with hydrochloric acid on the stopper of a bottle, dense white fumes of sal-ammoniac (ammonium chloride). Hence silk contains nitrogen. Thirdly, I will heat some fur with soda-lime. Ammonia escapes, giving all the reactions described under silk. Hence fur, wool, etc., contain nitrogen. As regards proofs of all three of these classes of fibres containing carbon, hydrogen, and oxygen, the char they all leave behind on heating in a closed vessel is the carbon itself present. For the hydrogen and oxygen, a perfectly dry sample of any of these fabrics is taken, of course in quantity, and heated strongly in a closed vessel furnished with a condensing worm like a still. You will find all give you water as a condensate--the vegetable fibre, acid water; the animal fibres, alkaline water from the ammonia. The presence of water proves both hydrogen and oxygen, since water is a compound of these elements. If you put a piece of potassium in contact with the water, the latter will at once decompose, the potassium absorbing the oxygen, and setting free the hydrogen as gas, which you could collect and ignite with a match, when you would find it would burn. That hydrogen was the hydrogen forming part of your cotton, silk, or wool, as the case might be. We must now attack the question of sulphur. First, we prepare a little alkaline lead solution (sodium plumbate) by adding caustic soda to a solution of lead acetate or sugar of lead, until the white precipitate first formed is just dissolved. That is one of our reagents; the other is a solution of a red-coloured salt called nitroprusside of sodium, made by the action of nitric acid on sodium ferrocyanide (yellow prussiate). The first-named is very sensitive to sulphur, and turns black directly. To show this, we take
PREV.   NEXT  
|<   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41  
42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   >>   >|  



Top keywords:

hydrogen

 
litmus
 
oxygen
 

nitrogen

 
cotton
 
sulphur
 
present
 

escapes

 

sodium

 

solution


ammonia
 
fibres
 

Ammonia

 
strongly
 
vessel
 

closed

 
carbon
 

vegetable

 

potassium

 

alkaline


forming

 

absorbing

 

contact

 

compound

 

elements

 

decompose

 

collect

 
ignite
 
setting
 

dissolved


action

 

nitric

 
ferrocyanide
 

nitroprusside

 

coloured

 

called

 

yellow

 

prussiate

 

directly

 
sensitive

reagents

 

prepare

 

plumbate

 

adding

 
question
 

attack

 

caustic

 

acetate

 

proves

 

formed