FREE BOOKS

Author's List




PREV.   NEXT  
|<   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165  
166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   >>   >|  
ide attention, Huygens was completely victorious; and Hooke, being unable to refute Huygens's arguments, exhibited such irritability that he increased his already general unpopularity. All of the arguments for and against the telescope sight are too numerous to be given here. In contending in its favor Huygens pointed out that the unaided eye is unable to appreciate an angular space in the sky less than about thirty seconds. Even in the best quadrant with a plain sight, therefore, the altitude must be uncertain by that quantity. If in place of the plain sight a telescope is substituted, even if it magnify only thirty times, it will enable the observer to fix the position to one second, with progressively increased accuracy as the magnifying power of the telescope is increased. This was only one of the many telling arguments advanced by Huygens. In the field of optics, also, Huygens has added considerably to science, and his work, Dioptrics, is said to have been a favorite book with Newton. During the later part of his life, however, Huygens again devoted himself to inventing and constructing telescopes, grinding the lenses, and devising, if not actually making, the frame for holding them. These telescopes were of enormous lengths, three of his object-glasses, now in possession of the Royal Society, being of 123, 180, and 210 feet focal length respectively. Such instruments, if constructed in the ordinary form of the long tube, were very unmanageable, and to obviate this Huygens adopted the plan of dispensing with the tube altogether, mounting his lenses on long poles manipulated by machinery. Even these were unwieldy enough, but the difficulties of manipulation were fully compensated by the results obtained. It had been discovered, among other things, that in oblique refraction light is separated into colors. Therefore, any small portion of the convex lens of the telescope, being a prism, the rays proceed to the focus, separated into prismatic colors, which make the image thus formed edged with a fringe of color and indistinct. But, fortunately for the early telescope makers, the degree of this aberration is independent of the focal length of the lens; so that, by increasing this focal length and using the appropriate eye-piece, the image can be greatly magnified, while the fringe of colors remains about the same as when a less powerful lens is used. Hence the advantage of Huygens's long telescope. He did not confine
PREV.   NEXT  
|<   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165  
166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   >>   >|  



Top keywords:

Huygens

 
telescope
 

colors

 

increased

 

length

 

arguments

 

thirty

 

fringe

 
separated
 

telescopes


lenses

 

unable

 

Society

 

compensated

 

manipulation

 
difficulties
 

discovered

 

constructed

 
instruments
 

obtained


results

 

mounting

 

altogether

 

dispensing

 
adopted
 

unmanageable

 

machinery

 

obviate

 

unwieldy

 

ordinary


manipulated

 

greatly

 
increasing
 
makers
 

degree

 

aberration

 

independent

 

magnified

 

advantage

 

confine


remains

 
powerful
 

fortunately

 

portion

 

convex

 

Therefore

 

things

 

oblique

 
refraction
 
possession