FREE BOOKS

Author's List




PREV.   NEXT  
|<   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228  
229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   >>   >|  
ntacts attached to diaphragms on which the sound wave acted. The contacts consisted of minute hammers resting on metal points fixed to the centre of diaphragms which closed the end of the experimental pipes. The signal marked the instant at which a sound wave impinged on a diaphragm. The markings on the paper band gave the period of time between two events, and the number of vibrations of the tuning-fork per second was estimated by means of markings due to the clock. The sound wave was usually originated by firing a pistol into the pipe furnished with diaphragms and contact pieces. Ayrton and Perry. In the chronographic use of the Morse telegraph instrument (Stewart and Gee, _Elementary Practical Phys._ p. 234) a circuit is arranged which includes a seconds' pendulum furnished with a fine platinum wire below the bob, which sweeps through a small mass of mercury forming a part of the circuit. There is a Morse key for closing the circuit. A fast-running Morse instrument and a battery are placed across this circuit as a shunt. A succession of dots is made on the paper ribbon by the circuit being closed by the pendulum, and the space between each adjacent dot indicates a period of one second's duration. Also, when the key is depressed, a mark is made on the paper. To measure a period of time, the key is depressed at the beginning and end of the period, causing two dots to be made on the ribbon; the interval between these, when measured by the intervals due to the pendulum, gives the length of the period in seconds, and also in fractions of a second, when the seconds' interval is subdivided into convenient equal parts. This apparatus has been used in determination of the velocity of sound. In the break circuit arrangement of pendulum key and Morse instrument the markings appear as breaks in a line which would otherwise be continuous. This combination was employed by Professors W.E. Ayrton and J. Perry in their determination of the acceleration of gravity at Tokio, 1877-1878 (_Proc. Phys. Soc. Lond._ 3, p. 268). Hipp. Mayer. In the tuning-fork electro-chronograph attributed to Hipp a metal cylinder covered with smoked glazed paper is rotated uniformly by clockwork, a tuning-fork armed with a metallic style being so adjusted that it makes a clear fine line on the smoked paper. The tuning-fork is placed in the secondary circuit of a
PREV.   NEXT  
|<   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228  
229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   >>   >|  



Top keywords:

circuit

 

period

 
tuning
 

pendulum

 
markings
 

diaphragms

 

seconds

 

instrument

 

furnished

 

Ayrton


interval

 
determination
 

smoked

 

depressed

 
ribbon
 
closed
 
velocity
 

arrangement

 

experimental

 
breaks

combination
 

employed

 

continuous

 

measured

 
intervals
 
signal
 

beginning

 

causing

 

marked

 

length


ntacts
 

Professors

 

convenient

 

subdivided

 

fractions

 

apparatus

 

uniformly

 

clockwork

 

rotated

 
glazed

covered

 
centre
 
metallic
 

secondary

 

adjusted

 
cylinder
 

attributed

 
gravity
 

acceleration

 
measure