FREE BOOKS

Author's List




PREV.   NEXT  
|<   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221  
222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   >>   >|  
e insulated wire move very close to the surfaces of the cylinders which form part of a secondary circuit of an induction coil, the primary circuit of which is opened when a screen is ruptured by a shot. A minute mark is made by the induced spark on the smoked paper with which the cylinders are covered. The time period between events is deduced from the space fallen through by the weight, and by means of a scale, graduated for a given distance between the screens, the velocity of a shot is at once found. It may be noted that the method of release is such that the falling weight is not subjected, after it has begun to fall, to a diminishing magnetic field, which would be the case if it were directly supported by an electromagnet. An iron rod when falling from an electromagnet, during a minute portion of its fall, is subject to a diminishing force acting in the opposite sense to that of gravity, whereby its time of fall is slightly changed. Colonel Sebert (_Extraits du memorial de l'artillerie de la marine_) devised a chronograph to indicate graphically the motion of recoil of a cannon when fired. A pillar fixed to the ground at the side of the gun-carriage supported a tuning-fork, the vibration of which was maintained electrically. The fork was provided with a tracing point attached to one of the prongs, and so adjusted that it drew its path on a polished sheet of smoke-blackened metal attached to the gun-carriage, which traversed past the tracing point when the gun ran back. The fork used made 500 complete vibrations per second. A central line was drawn through the curved path of the tracing point, and every entire vibration cut the straight line twice, the interval between each intersection equalling 1/1000 second. The diagram so produced gave ihe total time of the accelerated motion of recoil of the gun, the maximum velocity of recoil, and the rate of acceleration of recoil from the beginning to the end of the motion. By means of an instrument furnished with a microscope and micrometers, the length and amplitude, and the angle at which the curved line cut the central line, were measured. At each intersection (according to the inventor) the velocity could be deduced. The motion at any intersection being compounded of the greatest velocity of the fork, while passing through the midpoint of the vibration and the velocity of recoil, the tangent made b
PREV.   NEXT  
|<   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221  
222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   >>   >|  



Top keywords:

velocity

 

recoil

 
motion
 

intersection

 

tracing

 
vibration
 

central

 

cylinders

 

diminishing

 

electromagnet


curved

 

supported

 
falling
 

weight

 
minute
 
carriage
 
circuit
 

attached

 

deduced

 

tuning


passing

 

midpoint

 
tangent
 

ground

 

vibrations

 

complete

 
blackened
 

adjusted

 

polished

 

traversed


provided

 

prongs

 

maintained

 

electrically

 

straight

 

instrument

 

furnished

 
acceleration
 

beginning

 

microscope


micrometers

 

measured

 
length
 
amplitude
 

maximum

 

accelerated

 

interval

 
greatest
 

inventor

 

entire