FREE BOOKS

Author's List




PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  
enudation can have no tendency to diminish the thickness of any entire deposit.[39] Unless, therefore, a formation is completely destroyed by denudation in every part of the world (a thing very improbable), we may have in existing rocks a not very inadequate representation of the _mean thickness_ of all that have been formed, and even of the _maximum_ thickness of the larger portion. This will be the more likely because it is almost certain that many rocks contemporaneously formed are counted by geologists as distinct formations, whenever they differ in lithological character or in organic remains. But we know that limestones, sandstones, and shales, are always forming at the same time; {110} while a great difference in organic remains may arise from comparatively slight changes of geographical features, or from difference in the depth or purity of the water in which the animals lived.[40] _How to Estimate the Average Rate of Deposition of the Sedimentary Rocks._--But if we take the estimate of Professor Haughton (177,200 feet), which, as we have seen, is probably excessive, for the maximum thickness of the sedimentary rocks of the globe of all known geological ages, can we arrive at any estimate of the rate at which they were formed? Dr. Croll has attempted to make such an estimate, but he has taken for his basis the _mean_ thickness of the rocks, which we have no means whatever of arriving at, and which he guesses, allowing for denudation, to be equal to the _maximum_ thickness as measured by geologists. The land-area of the globe is, according to Dr. Croll, 57,000,000[41] square miles, and he gives the coast-line as 116,000 miles. This, however, is, for our purpose, rather too much, as it allows for bays, inlets, and the smaller islands. An approximate measurement on a globe shows that 100,000 miles will be nearer the mark, and this has the advantage of being an easily remembered even number. The distance from the coast, to which shore-deposits usually extend, may be reckoned at about 100 or 150 miles, but by far the larger portion of the matter brought down from the land will be deposited comparatively close to the shore; that is, within twenty or thirty miles. If we suppose the portion deposited beyond thirty miles to be added to the deposits within that distance, and the whole reduced to a uniform thickness in a direction at right angles to the coast, we should probably include all areas where deposits of the maxim
PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  



Top keywords:

thickness

 

formed

 

estimate

 

maximum

 

portion

 

deposits

 

geologists

 

comparatively

 

remains

 

organic


difference

 

distance

 

thirty

 

denudation

 

larger

 

deposited

 

uniform

 

direction

 
purpose
 

square


reduced

 
include
 

measured

 

allowing

 

arriving

 

guesses

 

angles

 

easily

 

remembered

 
twenty

advantage
 

number

 

matter

 

reckoned

 
extend
 
brought
 
nearer
 

inlets

 
smaller
 

islands


measurement

 

approximate

 

suppose

 

contemporaneously

 

counted

 

distinct

 

formations

 

sandstones

 

shales

 

limestones