endowment apart from knowledge and experience. Its possession
is the test of the real engineer. It distinguishes engineering as
a profession from engineering as a trade. It is this sense that
elevates the possessor to the profession which is, of all others,
the most difficult and the most comprehensive. Financial insight can
only come by experience in the commercial world. Likewise must come
the experience in technical work which gives balance to theoretical
training. Executive ability is that capacity to coordinate and command
the best results from other men,--it is a natural endowment. which
can be cultivated only in actual use.
The practice of mine engineering being so large a mixture of business,
it follows that the whole of the training of this profession cannot
be had in schools and universities. The commercial and executive
side of the work cannot be taught; it must be absorbed by actual
participation in the industry. Nor is it impossible to rise to
great eminence in the profession without university training, as
witness some of our greatest engineers. The university can do much;
it can give a broad basis of knowledge and mental training, and can
inculcate moral feeling, which entitles men to lead their fellows. It
can teach the technical fundamentals of the multifold sciences which
the engineer should know and must apply. But after the university
must come a schooling in men and things equally thorough and more
arduous.
In this predominating demand for commercial qualifications over
the technical ones, the mining profession has differentiated to
a great degree from its brother engineering branches. That this
is true will be most apparent if we examine the course through
which engineering projects march, and the demands of each stage
on their road to completion.
The life of all engineering projects in a general way may be divided
into five phases:[*]--
[Footnote *: These phases do not necessarily proceed step by step.
For an expanding works especially, all of them may be in process
at the same time, but if each item be considered to itself, this
is the usual progress, or should be when properly engineered.]
1. Determination of the value of the project.
2. Determination of the method of attack.
3. The detailed delineation of method, means, and tools.
4. The execution of the works.
5. The operation of the completed works.
These various stages of the resolution of an engineering project
req
|