FREE BOOKS

Author's List




PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   >>  
acts only when the particles seem almost in contact, and it ceases altogether when once, by mechanical or other means, the bond is broken, in consequence of the particles being forced too near, or sundered too far from, one another. One distinguishing difference between the attraction of gravitation and that of cohesion is, that whereas the former is uniform, the latter is variable; that is, under gravitation the attraction of any one particle to any other is the same, but under cohesion, some sets of particles are more forcibly drawn together than others. For instance, a particle of iron and a particle of cork gravitate equally, but particles of iron and particles of cork among themselves do not cohere equally. And it is just because those of the former cohere more than those of the latter, that a piece of iron feels harder and weighs heavier than a piece of cork. Further, the attraction of gravitation is unaffected by change in the condition of bodies, while that of cohesion is. It makes nothing to gravitation whether a piece of metal is as cold as ice, or heated with a sevenfold heat. Not so to the power of cohesion; withdraw heat, and the particles under cohesion cling closer; add it, and both the spaces grow wider and the attraction feebler. Thus, for example, you may suspend a weight by a piece of copper-wire, and the wire not break. But apply heat to the wire, and its cohesion will be lessened; the force of gravitation will overpower it, rupture the wire, and cause the weight to fall. _Cohesion_.--That the action of the attraction of cohesion depends on the contiguity of the particles in the cohering body, may be shown by an illustration. Take a ball of lead, divide it into two hemispheres, smooth the surfaces of section, then press them together, and you will find it requires some force to separate them; thus proving the dependence of cohesion on contiguity, although the effect in this case may be due in some degree to the pressure of the atmosphere as well as the power of cohesion. Heat is the principal agent in inducing cohesion, as well as in relaxing its energy; for by means of it you can weld the hardest as well as the softest substances into one, and two pieces of iron together, no less than two pieces of wax. It is possible, indeed, by heat to unite two sufficient waxed corks to one another, so as to be able by means of the one to draw the other out of a bottle: such, in this case, is the force of
PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   >>  



Top keywords:

cohesion

 
particles
 

attraction

 
gravitation
 

particle

 

cohere

 

equally

 

weight

 

contiguity

 

pieces


cohering

 

hardest

 
illustration
 

depends

 

Cohesion

 

bottle

 
lessened
 

substances

 
softest
 

overpower


rupture
 

action

 

relaxing

 

effect

 

proving

 

dependence

 

principal

 

atmosphere

 

pressure

 

degree


sufficient

 

surfaces

 

section

 
smooth
 
hemispheres
 

energy

 

requires

 
separate
 

inducing

 

divide


variable

 

uniform

 

distinguishing

 

difference

 

forcibly

 
gravitate
 

instance

 
ceases
 

altogether

 

contact