FREE BOOKS

Author's List




PREV.   NEXT  
|<   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181  
182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   >>   >|  
cond, and third operations are on comparatively large diameters, they should be done at the slow speed, handle _J_, Fig. 34, being set to give that speed. While the turret slide is being returned between operations 3 and 4, one of the spindle speed-changing dogs _N_ should be clamped to the rim of disk _D_ so as to change the spindle speed to the fast movement. This speed is continued until the last operation is completed, when a second dog is clamped in place to again throw in the slow movement. The feed knock-off dog should also be clamped in place on the disk to stop the machine at the completion of the fifth operation, when the turret is in its rear position. This completes the setting up of the machine. If the feed is finer than is necessary, the feed change handle _K_ may now be moved to a position which will give the maximum feed that can be used. It has taken considerable time to describe the setting up of the machine for this simple operation, but in the hands of a competent man it can be done quite rapidly. While a simple operation has been referred to in the foregoing, it will be understood that a great variety of work can be done on a machine of this type. It is not unusual to see as many as ten cutting tools operating simultaneously on a piece of work, the tools being carried by the turret, cross-slide and back facing attachment. The latter is operated from a separate cam applied to the cam-shaft and acting through levers on a back facing bar which passes through a hole in the spindle. In this back facing bar may be mounted drills, cutters, facing tools, etc. for machining the rear face of a casting held in the chuck jaws. Where extreme accuracy is required, a double back facing attachment may be used, arranged with cutters for taking both roughing and finishing cuts. The use of this attachment often saves a second operation. This automatic chucking and turning machine is also adapted for bar work, especially in diameters varying from 3 to 6 inches. =Turning Flywheel in Automatic Chucking and Turning Machine.=--A typical operation on the Potter & Johnston automatic chucking and turning machine is illustrated in Fig. 40, which shows the machine arranged for turning the cast-iron flywheel for the engine of a motor truck. The rim is turned and faced on both sides and the hub is bored, reamed and faced on both sides. The flywheel casting is held in a chuck by three special jaws which grip the inside of the ri
PREV.   NEXT  
|<   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181  
182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   >>   >|  



Top keywords:

machine

 

operation

 

facing

 
turning
 
spindle
 

clamped

 

turret

 
attachment
 

casting

 

arranged


position

 

setting

 

chucking

 
automatic
 

Turning

 

movement

 

handle

 
diameters
 

flywheel

 
operations

simple

 
change
 

cutters

 

applied

 
acting
 

double

 

taking

 

extreme

 

drills

 

mounted


machining

 

accuracy

 

levers

 

passes

 
required
 

Automatic

 
engine
 
turned
 
inside
 

special


reamed

 

illustrated

 

Johnston

 
adapted
 

finishing

 

varying

 

typical

 
Potter
 

Machine

 
Chucking