FREE BOOKS

Author's List




PREV.   NEXT  
|<   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115  
116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   >>   >|  
ed are the lines of attack of a single biological problem; for here we see, at the hands of a few workers, a great variety of forms of life--radiates, insects, vertebrates, low marine plants and high terrestrial ones--made to contribute to the elucidation of various phases of one general topic, the all-important subject of heredity. All these studies are conducted in absolute independence, and to casual inspection they might seem to have little affinity with one another; yet in reality they all trench upon the same territory, and each in its own way tends to throw light upon a topic which, in some of its phases, is of the utmost practical importance to the human family. It is a long vault from the embryo of an obscure sea-weed to the well-being of man, yet it may well happen--so wide in their application are the general life principles--that study of the one may point a practical moral for the other. Indeed, it constantly happens that the student of biology, while gazing through his microscope, hits upon discoveries that have the most far-removed implications. Thus a few years ago it was discovered that when a cell is about to bisect itself and become two cells, its nucleus undergoes a curious transformation. Within the nuclear substance little bodies are developed, usually threadlike in form, which take on a deep stain, and which the biologist calls chromosomes. These chromosomes vary in number in the cells of different animals, but the number is always the same for any given species of animal. If one were to group animate beings in classes according to this very fundamental quality of the cells he would have some very curious relations established. Thus, under the heading "creatures whose cells have twenty-four chromosomes," one would find beings so different as "the mouse, the salamander, the trout, and the lily," while the sixteen-chromosome group would introduce the very startling association of the ox, the guinea-pig, the onion, and man himself. But whatever their number, the chromosomes are always exactly bisected before the cell divides, one-half being apportioned to each of the two cells resulting from the division. Now the application is this: It was the study of these odd nuclear structures and their peculiar manouvrings that, in large measure, led Professor Weismann to his well-known theory of heredity, according to which the acquired traits of any being are not transmissible to the offspring. Professor W
PREV.   NEXT  
|<   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115  
116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   >>   >|  



Top keywords:

chromosomes

 

number

 

practical

 
curious
 
nuclear
 

application

 

beings

 
phases
 

heredity

 

Professor


general

 

animals

 

Weismann

 
measure
 

manouvrings

 

peculiar

 

structures

 
animal
 

species

 
bodies

developed

 
traits
 

substance

 

Within

 
offspring
 

transmissible

 

threadlike

 

biologist

 

theory

 

acquired


resulting

 

transformation

 

twenty

 

heading

 
creatures
 

guinea

 
sixteen
 
startling
 
chromosome
 

association


salamander

 

divides

 

classes

 
apportioned
 

animate

 

division

 

introduce

 
bisected
 

relations

 
established