FREE BOOKS

Author's List




PREV.   NEXT  
|<   504   505   506   507   508   509   510   511   512   513   514   515   516   517   518   519   520   521   522   523   524   525   526   527   528  
529   530   531   532   533   534   535   536   537   538   539   540   541   542   543   544   545   546   547   548   549   550   551   552   553   >>   >|  
signs are not wanting that it may be found so in this case. It is possible that the monumental domes and huge movable tubes of our present observatories will, in a few decades, be as much things of the past as Huygens's "aerial" telescopes. It is certain that the thin edge of the wedge of innovation has been driven into the old plan of equatoreal mounting. M. Loewy, the present director of the Paris Observatory, proposed to Delaunay in 1871 the direction of a telescope on a novel system. The design seemed feasible, and was adopted; but the death of Delaunay and the other untoward circumstances of the time interrupted its execution. Its resumption, after some years, was rendered possible by M. Bischoffsheim's gift of 25,000 francs for expenses, and the _coude_ or "bent" equatoreal has been, since 1882, one of the leading instruments at the Paris establishment. Its principle is briefly this: The telescope is, as it were, its own polar axis. The anterior part of the tube is supported at both ends, and is thus fixed in a direction pointing towards the pole, with only the power of twisting axially. The posterior section is joined on to it at right angles, and presents the object-glass, accordingly, to the celestial equator, in the plane of which it revolves. Stars in any other part of the heavens have their beams reflected upon the object-glass by means of a plane rotating mirror placed in front of it. The observer, meanwhile, is looking steadfastly down the bent tube towards the invisible _southern_ pole. He would naturally see nothing whatever were it not that a second plane mirror is fixed at the "elbow" of the instrument, so as to send the rays which have traversed the object-glass to his eye. He never needs to move from his place. He watches the stars, seated in an arm-chair in a warm room, with as perfect convenience as if he were examining the seeds of a fungus with a microscope. Nor is this a mere gain of personal ease. The abolition of hardship includes a vast accession of power.[1645] Among other advantages of this method of construction are, first, that of added stability, the motion given to the ordinary equatoreal being transferred, in part, to an auxiliary mirror. Next, that of increased focal length. The fixed part of the tube can be made almost indefinitely long without inconvenience, and with enormous advantage to the optical qualities of a large instrument. Finally, the costly and unmanageable cupola
PREV.   NEXT  
|<   504   505   506   507   508   509   510   511   512   513   514   515   516   517   518   519   520   521   522   523   524   525   526   527   528  
529   530   531   532   533   534   535   536   537   538   539   540   541   542   543   544   545   546   547   548   549   550   551   552   553   >>   >|  



Top keywords:

equatoreal

 

object

 

mirror

 
instrument
 

telescope

 

direction

 

Delaunay

 

present

 

traversed

 
watches

seated

 
observer
 
rotating
 

reflected

 
steadfastly
 

naturally

 

invisible

 

southern

 
microscope
 
length

increased

 
ordinary
 

transferred

 

auxiliary

 
indefinitely
 

Finally

 

costly

 
unmanageable
 

cupola

 

qualities


optical

 

inconvenience

 

enormous

 

advantage

 

motion

 

personal

 

fungus

 

convenience

 

examining

 

abolition


hardship

 

construction

 
method
 

stability

 

advantages

 

includes

 

accession

 
perfect
 

angles

 

system