FREE BOOKS

Author's List




PREV.   NEXT  
|<   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178  
179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   >>  
c telegraphs. In Watt's indicator for steam engines the paper does not move with a constant velocity, but its displacement is proportional to that of the piston of the engine, while that of the tracing point is proportional to the pressure of the steam. Hence the co-ordinates of a point of the curve traced on the diagram represent the volume and the pressure of the steam in the cylinder. The indicator-diagram not only supplies a record of the pressure of the steam at each stage of the stroke of the engine, but indicates the work done by the steam in each stroke by the area enclosed by the curve traced on the diagram. (J. C. M.) DIAL and DIALLING. Dialling, sometimes called gnomonics, is a branch of applied mathematics which treats of the construction of sun-dials, that is, of those instruments, either fixed or portable, which determine the divisions of the day (Lat. _dies_) by the motion of the shadow of some object on which the sun's rays fall. It must have been one of the earliest applications of a knowledge of the apparent motion of the sun; though for a long time men would probably be satisfied with the division into morning and afternoon as marked by sun-rise, sun-set and the greatest elevation. _History._--The earliest mention of a sun-dial is found in Isaiah xxxviii. 8: "Behold, I will bring again the shadow of the degrees which is gone down in the _sun-dial_ of Ahaz ten degrees backward." The date of this would be about 700 years before the Christian era, but we know nothing of the character or construction of the instrument. The earliest of all sun-dials of which we have any certain knowledge was the hemicycle, or hemisphere, of the Chaldaean astronomer Berossus, who probably lived about 300 B.C. It consisted of a hollow hemisphere placed with its rim perfectly horizontal, and having a bead, or globule, fixed in any way at the centre. So long as the sun remained above the horizon the shadow of the bead would fall on the inside of the hemisphere, and the path of the shadow during the day would be approximately a circular arc. This arc, divided into twelve equal parts, determined twelve equal intervals of time for that day. Now, supposing this were done at the time of the solstices and equinoxes, and on as many intermediate days as might be considered sufficient, and then curve lines drawn through the corresponding points of division of the different arcs, the shadow of the bead
PREV.   NEXT  
|<   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178  
179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   >>  



Top keywords:

shadow

 

pressure

 
earliest
 

hemisphere

 

diagram

 

division

 

twelve

 
construction
 

motion

 

indicator


knowledge

 

stroke

 

traced

 

proportional

 

engine

 
degrees
 

backward

 
character
 

consisted

 

instrument


Berossus

 

hemicycle

 

Christian

 
telegraphs
 

astronomer

 

hollow

 
Chaldaean
 

centre

 
equinoxes
 

intermediate


solstices
 
intervals
 
supposing
 
considered
 

points

 

sufficient

 

determined

 

globule

 

perfectly

 

horizontal


remained

 
circular
 

divided

 

approximately

 

horizon

 

inside

 

greatest

 
Dialling
 
called
 

DIALLING