FREE BOOKS

Author's List




PREV.   NEXT  
|<   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315  
316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   >>   >|  
enth of one per cent, or less. In the deeper seas, it is doubtful whether the rate of animal growth is such as to permit the formation of any beds which have less than one half of their mass made up of materials which fell through the water. In certain areas of the open seas the upper part of the water is dwelt in by a host of creatures, mostly foraminifera, which extract limestone from the water, and, on dying, send their shells to the bottom. Thus in the North Atlantic, even where the sea floor is of great depth beneath the surface, there is constantly accumulating a mass of limy matter, which is forming very massive limestone strata, somewhat resembling chalk deposits, such as abundantly occur in Great Britain, in the neighbouring parts of Europe, in Texas, and elsewhere. Accumulations such as this, where the supply is derived from the surface of the water, are not affected by the accidents which divide beds made on the bottom in the manner before described. They may, therefore, have the singularly continuous character which we note in the English chalk, where, for the thickness of hundreds of feet, we may have no evident partitions, except certain divisions, which have evidently originated long after the beds were formed. We have already noted the fact that, while the floors of the deeper seas appear to lack mountainous elevations, those arising from the folding of strata, they are plentifully scattered over with volcanic cones. We may therefore suppose that, in general, the deposits formed on the sea floor are to a great extent affected by the materials which these vents cast forth. Lava streams and showers represent only a part of the contributions from volcanoes, which finally find their way to the bottom. In larger part, the materials thrown forth are probably first dissolved in the water and then taken up by the organic species; only after the death of these creatures does the waste go to the bottom. As hosts of these creatures have no solid skeleton to contribute to the sea floor, such mineral matter as they may obtain is after their death at once restored to the sea. Not only does the contribution of organic sediment diminish in quantity with the depth which is attained, but the deeper parts of the ocean bed appear to be in a condition where no accumulations of this nature are made, and this for the reason that the water dissolves the organic matter more rapidly than it is laid down. Thus in place of li
PREV.   NEXT  
|<   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315  
316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   >>   >|  



Top keywords:
bottom
 

matter

 

materials

 

organic

 

creatures

 

deeper

 
surface
 
strata
 

affected

 
formed

deposits

 

limestone

 
general
 

suppose

 

showers

 

diminish

 

extent

 

streams

 
volcanic
 
sediment

mountainous

 

elevations

 
floors
 
arising
 

scattered

 

plentifully

 

folding

 
attained
 

quantity

 

contribution


obtain

 

reason

 

nature

 

species

 
mineral
 

skeleton

 
rapidly
 

dissolves

 
accumulations
 

volcanoes


finally

 

contributions

 

contribute

 
condition
 

restored

 

dissolved

 

larger

 

thrown

 

represent

 
shells