FREE BOOKS

Author's List




PREV.   NEXT  
|<   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159  
160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   >>   >|  
it passes to the underlying moisture, where it finds a convenient place to take on a quiet form. Almost all these hurried movements of electrical energy which intensely heat and light the air which they traverse fly from one part of a cloud to another, or cross from cloud sphere to cloud sphere; of those which start toward the earth, many are exhausted before they reach its surface, and even those that strike convey but a portion of their original impulse to the ground. The wearing-out effect of lightning in its journey along the air conductors in its flaming passages is well illustrated by what happens when the charge strikes a wire which is not large enough freely to convey it. The wire is heated, generally made white hot, often melted, and perhaps scattered in the form of vapour. In doing this work the electricity may, and often is, utterly dissipated--that is, changed into heat. It has been proposed to take advantage of this principle in protecting buildings from lightning by placing in them many thin wires, along which the current will try to make its way, being exhausted in melting or vaporizing the metal through which it passes. There are certain other forms of lightning, or at least of electrical discharges, which produce light and which may best be described in this connection. It occasionally happens that the earth becomes so charged that the current proceeds from its surface to the clouds. More rarely, and under conditions which we do not understand, the electric energy is gathered into a ball-like form, which may move slowly along the surface until it suddenly explodes. It is a common feature of all these forms of lightning which we have noted that they ordinarily make in their movement considerable noise. This is due to the sudden displacement of the air which they traverse--displacement due to the action of heat in separating the particles. It is in all essential regards similar to the sounds made by projectiles, such as meteors or swift cannon shots, as they fly through the air. It is even more comparable to the sound produced by exploding gunpowder. The first sound effect from the lightning stroke is a single rending note, which endures no longer--indeed, not as long--as the explosion of a cannon. Heard near by, this note is very sharp, reminding one of the sound made by the breaking of glass. The rolling, continuous sound which we commonly hear in thunder is, as in the case of the noise produced by
PREV.   NEXT  
|<   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159  
160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   >>   >|  



Top keywords:
lightning
 

surface

 
current
 

cannon

 
exhausted
 

convey

 

produced

 
effect
 

passes

 

displacement


energy
 

electrical

 

traverse

 

sphere

 

common

 
connection
 

occasionally

 
ordinarily
 
feature
 

considerable


movement

 

understand

 

rarely

 

conditions

 

charged

 

proceeds

 

clouds

 

electric

 

suddenly

 

explodes


slowly
 

gathered

 

explosion

 
longer
 

rending

 

endures

 

continuous

 

commonly

 
rolling
 
reminding

breaking

 

single

 
stroke
 

similar

 

sounds

 

projectiles

 

essential

 

action

 

separating

 

particles