FREE BOOKS

Author's List




PREV.   NEXT  
|<   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158  
159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   >>   >|  
able state of a cloud, going up or down according as it was heated or cooled. When the formation of the drop of water or snowflake begins, the mass is very small. If in descending it encounters great thickness of cloud, the bit may grow by further condensation until it becomes relatively large. Generally in this way we may account for the diversities in the size of raindrops or snowflakes. It often happens that the particles after taking on the form of snowflakes encounter in their descent air so warm that they melt into raindrops, or, if only partly melted, reach the surface as sleet. Or, starting as raindrops, they may freeze, and in this simple state may reach the earth, or after freezing they may gather other frozen water about them, so that the hailstone has a complicated structure which, from the point of view of classification, is between a raindrop and a snowflake. In the process of condensation--indeed, in the steps which precede the formation of rain and snow--there is often more or less trace of electrical action; in fact, a part of the energy which was involved in the vapourization of water, on its condensation, even on the dust motes appears to be converted into electrical action, which probably operates in part to keep the little aggregates of water asunder. When they coalesce in drops or flakes, this electricity often assumes the form of lightning, which represents the swift passage of the electric store from a region where it is most abundant to one where it is less so. The variations in this process of conveying the electricity are probably great. In general, it probably passes, much as an electric current is conveyed, through a wire from the battery which produces the force. In other cases, where the tension is high, or, in other words, where the discharge has to be hastened, we have the phenomena of lightning in which the current burns its way along its path, as it may traverse a slender wire, vapourizing it as it goes. In general, the lightning flash expends its force on the air conductors, or lines of the moist atmosphere along which it breaks its path, its energy returning into the vapour which it forms or the heat which it produces in the other parts of the air. In some cases, probably not one in the thousand of the flashes, the charge is so heavy that it is not used up in its descent toward the earth, and so electrifies, or, as we say, strikes, some object attached to the earth, through which
PREV.   NEXT  
|<   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158  
159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   >>   >|  



Top keywords:
raindrops
 

lightning

 
condensation
 

snowflake

 
current
 

general

 

descent

 
formation
 

action

 

energy


electricity
 

electrical

 

process

 

electric

 

produces

 
snowflakes
 

region

 
atmosphere
 
passage
 

thousand


variations

 

attached

 

abundant

 

represents

 

breaks

 

flakes

 

coalesce

 

aggregates

 

asunder

 

vapour


returning
 

conveying

 

assumes

 
discharge
 

slender

 

tension

 

hastened

 

operates

 
electrifies
 
traverse

phenomena

 

vapourizing

 
passes
 

expends

 

conductors

 

strikes

 

battery

 

charge

 

object

 

conveyed