FREE BOOKS

Author's List




PREV.   NEXT  
|<   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58  
59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   >>   >|  
health insurance. There are, however, quite serious drawbacks to the use of computer-chips. When they do break down, it is a daunting challenge to figure out what the heck has gone wrong with them. A broken cordboard generally had a problem in it big enough to see. A broken chip has invisible, microscopic faults. And the faults in bad software can be so subtle as to be practically theological. If you want a mechanical system to do something new, then you must travel to where it is, and pull pieces out of it, and wire in new pieces. This costs money. However, if you want a chip to do something new, all you have to do is change its software, which is easy, fast and dirt-cheap. You don't even have to see the chip to change its program. Even if you did see the chip, it wouldn't look like much. A chip with program X doesn't look one whit different from a chip with program Y. With the proper codes and sequences, and access to specialized phone-lines, you can change electronic switching systems all over America from anywhere you please. And so can other people. If they know how, and if they want to, they can sneak into a microchip via the special phonelines and diddle with it, leaving no physical trace at all. If they broke into the operator's station and held Leticia at gunpoint, that would be very obvious. If they broke into a telco building and went after an electromechanical switch with a toolbelt, that would at least leave many traces. But people can do all manner of amazing things to computer switches just by typing on a keyboard, and keyboards are everywhere today. The extent of this vulnerability is deep, dark, broad, almost mind-boggling, and yet this is a basic, primal fact of life about any computer on a network. Security experts over the past twenty years have insisted, with growing urgency, that this basic vulnerability of computers represents an entirely new level of risk, of unknown but obviously dire potential to society. And they are right. An electronic switching station does pretty much everything Letitia did, except in nanoseconds and on a much larger scale. Compared to Miss Luthor's ten thousand jacks, even a primitive 1ESS switching computer, 60s vintage, has a 128,000 lines. And the current AT&T system of choice is the monstrous fifth-generation 5ESS. An Electronic Switching Station can scan every line on its "board" in a tenth of a second, and it does this over and over, t
PREV.   NEXT  
|<   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58  
59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   >>   >|  



Top keywords:

computer

 

program

 

change

 
switching
 

vulnerability

 
people
 

system

 

pieces

 
electronic
 
software

faults

 

station

 
broken
 
boggling
 
primal
 

network

 

toolbelt

 

Security

 

experts

 
keyboard

keyboards

 
manner
 

typing

 

switches

 

amazing

 

extent

 
things
 
traces
 

current

 

choice


vintage

 

thousand

 

primitive

 

monstrous

 

Station

 

generation

 

Electronic

 
Switching
 

Luthor

 

unknown


switch
 

represents

 
insisted
 
growing
 
urgency
 

computers

 

potential

 
larger
 
nanoseconds
 

Compared