FREE BOOKS

Author's List




PREV.   NEXT  
|<   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181  
182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   >>   >|  
n its drum. This method is sufficient in the case of most road vehicles, and is largely used on railway vehicles. But the power thus available is limited, and becomes inadequate for heavy vehicles moving at high speeds. Moreover, on a train consisting of a number of vehicles, the hand brakes on each of which are independent of all others, either a brakesman must be carried on each, or a number of the brakes must be left unused, with consequent loss of stopping power; while even if there is a brakesman on every vehicle it is impossible to secure that all the brakes throughout the train are applied with the promptness that is necessary in case of emergency. Considerations of this sort led to the development of power brakes for railway trains. Of these there are five main classes:-- Railway power brakes. (1) Mechanical brakes, worked by springs, friction wheels on the axle, chains wound on drums, or other mechanical devices, or by the force produced when, by reason of a sudden checking of the speed of the locomotive, the momentum of the cars causes pressure on the draw-bars or buffing devices. (2) Hydraulic brakes, worked by means of water forced through pipes into proper mechanism for transmitting its force to the brake-shoes. (3) Electric brakes. (4) Air and vacuum brakes, worked by compressed air or by air at atmospheric pressure operating on a vacuum. (5) Brakes worked by steam or water from the boiler of the engine, operating by means of a cylinder; the use of these is generally limited to the locomotive. Of this kind is the counter-pressure or water brake of L. le Chatelier. If the valve gear of a locomotive in motion be reversed and the steam regulator be left open, the cylinders act as compressors, pumping air from the exhaust pipe into the boiler against the steam pressure. A retarding effect is thus exercised, but at the cost of certain inconveniences due to the passage of hot air and cinders from the smoke box through the cylinders. To remedy these, le Chatelier arranged that a jet of hot water from the boiler should be delivered into the exhaust pipe, so that steam and not the hot flue gases should be pumped back. Power brakes may be either continuous or independent--continuous if connected throughout the train and with the locomotive by pipes, wires, &c., as the compressed air, vacuum and electric brakes; independent if not so connected, as the buffer-brakes and hand-brakes. Continuous brakes may b
PREV.   NEXT  
|<   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181  
182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   >>   >|  



Top keywords:
brakes
 

pressure

 
vehicles
 

worked

 
locomotive
 

independent

 

vacuum

 
boiler
 

connected

 

continuous


operating
 

compressed

 

exhaust

 

cylinders

 

Chatelier

 
devices
 

number

 
brakesman
 
railway
 

limited


regulator

 

atmospheric

 

reversed

 

compressors

 

pumping

 

largely

 

counter

 

generally

 

engine

 

cylinder


Brakes
 

motion

 

exercised

 
pumped
 

delivered

 

method

 

buffer

 

Continuous

 
electric
 
sufficient

inconveniences

 

inadequate

 
retarding
 

effect

 

passage

 

remedy

 

arranged

 

cinders

 

Electric

 

classes