FREE BOOKS

Author's List




PREV.   NEXT  
|<   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56  
57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   >>   >|  
to make a planetary system; all our sun's planets and their satellites taken together amount to only 1/100th of the mass of the solar system. We may assume, further, that the outpoured matter would be a mixed cloud of gases and solid and liquid particles; and that it would stream out, possibly in successive waves, from more than one part of the disrupted sun, tending to form great spiral trails round the parent mass. Some astronomers even suggest that, as there are tidal waves raised by the moon at opposite points of the earth, similar tidal outbursts would occur at opposite points on the disk of the disrupted star, and thus give rise to the characteristic arms starting from opposite sides of the spiral nebula. This is not at all clear, as the two tidal waves of the earth are due to the fact that it has a liquid ocean rolling on, not under, a solid bed. In any case, we have here a good suggestion of the origin of the spiral nebula and of its further development. As soon as the outbursts are over, and the scattered particles have reached the farthest limit to which they are hurled, the concentrating action of gravitation will slowly assert itself. If we conceive this gravitational influence as the pressure of the surrounding ether we get a wider understanding of the process. Much of the dispersed matter may have been shot far enough into space to escape the gravitational pull of the parent mass, and will be added to the sum of scattered cosmic dust, meteors, and close shoals of meteors (comets) wandering in space. Much of the rest will fall back upon the central body But in the great spiral arms themselves the distribution of the matter will be irregular, and the denser areas will slowly gather in the surrounding material. In the end we would thus get secondary spheres circling round a large primary. This is the way in which astronomers now generally conceive the destruction and re-formation of worlds. On one point the new planetesimal theory differs from the other theories. It supposes that, since the particles of the whirling nebula are all travelling in the same general direction, they overtake each other with less violent impact than the other theories suppose, and therefore the condensation of the material into planets would not give rise to the terrific heat which is generally assumed. We will consider this in the next chapter, when we deal with the formation of the planets. As far as the central body, the sun,
PREV.   NEXT  
|<   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56  
57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   >>   >|  



Top keywords:
spiral
 

matter

 

particles

 

nebula

 
planets
 
opposite
 

parent

 
astronomers
 

scattered

 

material


formation

 

outbursts

 
theories
 

generally

 
central
 
points
 

slowly

 

surrounding

 
gravitational
 

conceive


liquid

 

meteors

 

disrupted

 
system
 

denser

 
distribution
 

irregular

 

wandering

 

comets

 

cosmic


shoals

 

escape

 
worlds
 

violent

 

impact

 

overtake

 
direction
 
travelling
 

general

 

suppose


chapter

 

assumed

 

condensation

 

terrific

 
whirling
 

primary

 
destruction
 

circling

 
secondary
 

spheres