FREE BOOKS

Author's List




PREV.   NEXT  
|<   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100  
101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   >>   >|  
d to the origin of the higher Invertebrates. Once the fish plainly appears upon the scene it is found to be undergoing a process of evolution like all other animals. The vast majority of our fishes have bony frames (or are Teleosts); the fishes of the Devonian age nearly all have frames of cartilage, and we know from embryonic development that cartilage is the first stage in the formation of bone. In the teeth and tails, also, we find a gradual evolution toward the higher types. But the earlier record is, for reasons I have already given, obscure; and as my purpose is rather to discover the agencies of evolution than to strain slender evidence in drawing up pedigrees, I need only make brief reference to the state of the problem. Until comparatively recent times the animal world fell into two clearly distinct halves, the Vertebrates and the Invertebrates. There were several anatomical differences between the two provinces, but the most conspicuous and most puzzling was the backbone. Nowhere in living nature or in the rocks was any intermediate type known between the backboned and the non-backboned animal. In the course of the nineteenth century, however, several animals of an intermediate type were found. The sea-squirt has in its early youth the line of cartilage through the body which, in embryonic development, represents the first stage of the backbone; the lancelet and the Appendicularia have a rod of cartilage throughout life; the "acorn-headed worm" shows traces of it. These are regarded as surviving specimens of various groups of animals which, in early times, fell between the Invertebrate and Vertebrate worlds, and illustrate the transition. With their aid a genealogical tree was constructed for the fish. It was assumed that some Cambrian or Silurian Annelid obtained this stiffening rod of cartilage. The next advantage--we have seen it in many cases--was to combine flexibility with support. The rod was divided into connected sections (vertebrae), and hardened into bone. Besides stiffening the body, it provided a valuable shelter for the spinal cord, and its upper part expanded into a box to enclose the brain. The fins were formed of folds of skin which were thrown off at the sides and on the back, as the animal wriggled through the water. They were of use in swimming, and sections of them were stiffened with rods of cartilage, and became the pairs of fins. Gill slits (as in some of the highest worms) appeared i
PREV.   NEXT  
|<   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100  
101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   >>   >|  



Top keywords:
cartilage
 
animal
 
animals
 
evolution
 

development

 

embryonic

 

backbone

 

sections

 

stiffening

 

intermediate


frames

 

fishes

 

Invertebrates

 

backboned

 

higher

 

Silurian

 

genealogical

 
constructed
 
assumed
 

Appendicularia


Cambrian

 

lancelet

 
specimens
 

groups

 

traces

 

Annelid

 
regarded
 

surviving

 

Invertebrate

 
Vertebrate

headed

 
transition
 

illustrate

 

worlds

 
vertebrae
 

wriggled

 

thrown

 

swimming

 

highest

 

appeared


stiffened

 
formed
 
flexibility
 

combine

 

support

 

divided

 

connected

 

advantage

 

represents

 
hardened