FREE BOOKS

Author's List




PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>  
f the motion which acts upon it. When the wheel of a common electrical machine is turned, the product is electricity,--a force very different from that which originates it. Ordinary mechanical motion _goes in_; electricity _comes out_, the latter being a modified motion due to the physical structure of the machine. In like manner, a magnet may be considered as a machine by means of which mechanical motion may be converted into some other form of motion. It is evident that molecular structure is chiefly concerned in this. If a bar of iron that exhibits no evidence of magnetism whatever be subjected to torsion, it will immediately become a magnet with poles dependent upon the direction of the twist. This developed magnetism will re-act upon a coil of wire, and so move a galvanometer needle. If the bar be permitted to recover its original condition, it will lose its magnetism, which will at once re-appear upon twisting the rod again. Now, when the rod is twisted, it is evident that there is a molecular strain in certain directions throughout the mass. The converse experiment illustrates the same thing. It has been found, that when a rod of iron is made magnetic by the action of a current of electricity circulating about it, and at the same time passing longitudinally through it, the rod is slightly lengthened and twisted in a direction that depends upon the direction of the current. Moreover, if a permanent magnet be heated to a red heat, its magnetism is destroyed; for such a heat allows the molecules to freely arrange themselves without any external constraint. Also, if a permanent magnet be suspended so as to give out a musical sound when it is struck, the magnetism will be much weakened by making it thus to vibrate. In this case, as in the other, the vibrations affect every molecule, and so enable them to re-adjust themselves to the positions they held before being magnetized. The same thing happens when a bar of iron is made magnetic through the inductive action of the earth. When this bar is held in the direction of the magnetic dip, it becomes but very slightly magnetized; but, if it be so held that when it is struck with a hammer it will ring, that is, give out a musical sound, it will at once become decidedly magnetic. Evidently the earth's action tends to set the molecules of the mass in a new position, but cohesion prevents them from assuming it. When the molecules are made to vibrate, they can assume such new pos
PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>  



Top keywords:

motion

 

magnetism

 
direction
 

magnet

 

magnetic

 

action

 

molecules

 
electricity
 

machine

 

vibrate


musical

 

twisted

 

mechanical

 
struck
 
permanent
 

current

 

structure

 
slightly
 

magnetized

 

molecular


evident
 

prevents

 
freely
 

heated

 

arrange

 

cohesion

 

lengthened

 

assume

 

assuming

 
depends

Moreover

 

destroyed

 

positions

 
longitudinally
 

adjust

 
enable
 
Evidently
 

decidedly

 

inductive

 
molecule

suspended

 
position
 
constraint
 

external

 

hammer

 

weakened

 

affect

 
vibrations
 
making
 

converted