FREE BOOKS

Author's List




PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   >>  
It was easy to make a sound upon such an instrument that was altogether out of hearing-range of any person. Mr. Galton tried some very interesting experiments upon animals, by using these whistles. He went through the Zooelogical Gardens, and produced such high sounds near the ears of all the animals. Some of them would prick up their ears, showing that they heard the sound; while others apparently could not hear it. He declares that among all the animals the cat was found to hear the sharpest sound. Small dogs can also hear very shrill notes, while larger ones can not. Cattle were found to hear higher sounds than horses. The squeak of bats and of mice cannot be heard by many persons who can hear ordinary sounds as well as any; sharpness of hearing having nothing to do with the limits of hearing. EFFECTS OF SOUND UPON OTHER BODIES. If a vibrating tuning-fork be held close to a delicately suspended body, the latter will approach the fork, as if impelled by some attractive force. The experiment can be made by fastening a bit of paper about an inch square to a straw five or six inches long, and then suspending the straw to a thread, so that it is balanced horizontally. Bring the vibrating tuning-fork within a quarter of an inch of the paper. In this case the motion of approach is due to the fact that the pressure of the air is less close to a vibrating body than at a distance from it; there is therefore a slightly greater pressure on the side of the paper away from the fork than on the side next to it. If a vibrating tuning-fork be held near to the ear, and turned around, there may be found four places in one rotation where the sound will be heard but very faintly, while in every other position it can be heard plainly enough. The extinction of the sound is due to what is called interference. Each of the prongs of the fork is giving out a sound-wave at the same time, but in opposite directions, each wave advancing outwards in every direction. Where the rarefied part of one wave exactly balances the condensed part of the other, there of course the sound will be extinguished; and these lines of interference are found to be hyperbolas, or, if considered with reference to both entire waves, two hyperbolic surfaces. SYMPATHETIC VIBRATIONS. When it is once understood that a musical sound is caused by the vibrations more or less frequent which only make the difference we call pitch, it might at once be inferred, that
PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   >>  



Top keywords:
vibrating
 
sounds
 
tuning
 
animals
 

hearing

 

interference

 

approach

 

pressure

 

instrument

 

position


altogether

 

faintly

 

plainly

 

called

 

prongs

 

rotation

 

extinction

 
giving
 
slightly
 

Galton


distance

 

interesting

 
greater
 

person

 

places

 

turned

 
understood
 

musical

 

caused

 
VIBRATIONS

hyperbolic

 
surfaces
 

SYMPATHETIC

 

vibrations

 
inferred
 

difference

 

frequent

 

entire

 

direction

 

rarefied


outwards

 
advancing
 
opposite
 

directions

 

balances

 

hyperbolas

 

considered

 

reference

 

condensed

 
extinguished