FREE BOOKS

Author's List




PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   >>  
er scantling, and gain in lateral stiffness--the two pieces forming one brace by being properly blocked and bolted together. Below is given a table of dimensions for the various parts of this style of structure: Span. Rise. Bolster. Stringer. Braces. Rod. No. Size. 15 6 12 x 12 12 x 12 2--5 x 6 1-1/8 20 7 14 x 14 12 x 13 2--5 x 8 1-3/8 25 8 14 x 14 12 x 15 2--6 x 8 1-1/2 30 10 14 x 14 12 x 18 2--6 x 9 1-5/8 Single Beams under each rail firmly braced laterally, and trussed by an iron rod, (or preferably by two iron rods,) and a post on the under side of the beam. The deflection of the rod is usually taken at 1\8 of the span. Pl. II., Fig. 1, represents this style of trussing a beam--which is generally used for spans of from 15 to 30 ft. Below is a table of dimensions for this truss with single and double rods; if double rods are used only half the given section will be necessary for each one of the pair. Span. Rise. Stringer. Post. Rod. Rods. Feet. In Feet. (single.) (double.) 15 1-7/8 12 x 12 6 x 8 2-1/8 diam. or 1-1/2 diam. 20 2-1/2 12 x 14 7 x 8 2-1/2 " 1-3/4 " 25 3-1/8 12 x 16 8 x 8 2-3/4 " 2 " 30 3-3/4 13 x 18 9 x 9 3 " 2-1/8 " It is as well to tenon the post into the beam, and also strap it firmly with iron plates--and the end should be shod with iron to form a saddle for the rods to bear upon. Now if we should make a bridge, on the plan of Fig. 3, Pl. I., 75 or 100 feet, or perhaps more, in length, the braces A F and F C, would not only be very long but very large and heavy, and one chief requisite in a good bridge is, to have all the beams so proportioned that they will resist all the strains acting upon them, without being unnecessarily large. It now becomes necessary to have a different arrangement of the parts of the truss in order to obtain increased length of span. Suppose we have a span, of 40 feet, as represented in Fig 2, Pl. I. Now instead of running the braces from A C until they meet in a point, as before we stop them at a, and c, and place the straining beam, a c, between them to prevent those points from approaching,
PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   >>  



Top keywords:

double

 

single

 
bridge
 

braces

 

length

 

firmly

 

Stringer

 
dimensions
 

scantling


proportioned

 

structure

 

Bolster

 

requisite

 
acting
 
running
 

points

 

approaching

 
prevent

straining

 

represented

 
unnecessarily
 

strains

 
increased
 

Suppose

 

obtain

 

arrangement

 

resist


braced

 

generally

 
represents
 

trussing

 

forming

 

pieces

 
properly
 

blocked

 
preferably

deflection
 

trussed

 

laterally

 
section
 

plates

 
saddle
 
bolted
 

Single

 

stiffness


lateral

 

Braces