FREE BOOKS

Author's List




PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  
be entirely exhausted of nearly all the air contained therein. Then he takes Euclid's proposition to the effect that the superficial area of globes increases in the proportion of the square of the diameter, whilst the volume increases in the proportion of the cube of the same diameter, and he considers that if one only constructs the globe of thin metal, of sufficient size, and exhausts the air in the manner that he suggests, such a globe will be so far lighter than the surrounding atmosphere that it will not only rise, but will be capable of lifting weights. Here is Lana's own way of putting it:-- 'But so that it may be enabled to raise heavier weights and to lift men in the air, let us take double the quantity of copper, 1,232 square feet, equal to 308 lbs. of copper; with this double quantity of copper we could construct a vessel of not only double the capacity, but of four times the capacity of the first, for the reason shown by my fourth supposition. Consequently the air contained in such a vessel will be 718 lbs. 4 2/3 ounces, so that if the air be drawn out of the vessel it will be 410 lbs. 4 2/3 ounces lighter than the same volume of air, and, consequently, will be enabled to lift three men, or at least two, should they weigh more than eight pesi each. It is thus manifest that the larger the ball or vessel is made, the thicker and more solid can the sheets of copper be made, because, although the weight will increase, the capacity of the vessel will increase to a greater extent and with it the weight of the air therein, so that it will always be capable to lift a heavier weight. From this it can be easily seen how it is possible to construct a machine which, fashioned like unto a ship, will float on the air.' With four globes of these dimensions Lana proposed to make an aerial ship of the fashion shown in his quaint illustration. He is careful to point out a method by which the supporting globes for the aerial ship may be entirely emptied of air; (this is to be done by connecting to each globe a tube of copper which is 'at least a length of 47 modern Roman palm).' A small tap is to close this tube at the end nearest the globe, and then vessel and tube are to be filled with water, after which the tube is to be immersed in water and the tap opened, allowing the water to run out of the vessel, while no air enters. The tap is then closed before the lower end of the tube is removed from the water, leaving no air
PREV.   NEXT  
|<   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45  
46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   >>   >|  



Top keywords:

vessel

 

copper

 
capacity
 

double

 

weight

 

globes

 

ounces

 
quantity
 

enabled

 

capable


heavier

 

weights

 

contained

 
diameter
 
square
 

aerial

 

volume

 
proportion
 

increases

 

increase


lighter
 

construct

 
proposed
 

dimensions

 

fashioned

 

easily

 

extent

 

greater

 

machine

 
emptied

filled

 

nearest

 

removed

 
immersed
 

opened

 
enters
 
closed
 

allowing

 

careful

 
leaving

illustration

 
fashion
 
quaint
 

method

 

supporting

 

modern

 

length

 
connecting
 
fourth
 

suggests