FREE BOOKS

Author's List




PREV.   NEXT  
|<   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123  
124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>   >|  
ghter while cooling, and yellowish when cold. In the presence of a very small quantity of iron, the bead appears colorless when cold. If the iron is increased, the bead is opaque while cooling, and of a dirty dark-yellow color when cold. In the reduction flame, and fused upon platinum wire, the bead appears dark green (FeO + Fe^{2}O^{3}). By the addition of some tin, and fused upon charcoal, the bead appears bluish-green, or not unlike that of sulphate of iron. Microcosmic salt dissolves the oxides of iron in the oxidation flame to a clear bead, which, by the addition of a considerable quantity of iron, becomes of an orange color while hot, but gets lighter while cooling, presenting finally a greenish hue, and gradually becoming lighter, till, when cold, it is colorless. If the iron is increased, the hot bead presents a dark red color, but while cooling a brownish-red, which changes to a dirty-green, and, when cold, to a brownish-red color. The decrease of the color during the transition from the hot to the cold state is still greater in the bead formed by the microcosmic salt. In the reduction flame no change is visible if the quantity of iron be small. By the addition of more iron, the hot bead appears red, and while cooling, changes to yellow, then green, and, when cold, is of a dull red. By fusing the bead on charcoal with a small addition of tin, it exhibits, while cooling, a bluish-green color, but, when cold, is colorless. The oxides of iron are not dissolved in the oxidation flame by fusion with carbonate of soda. By ignition with soda upon charcoal in the reduction flame, they are absorbed and reduced to the metallic state. Cut out this portion of the charcoal; grind it with the addition of some water in an agate mortar, for the purpose of washing off the carbon particles, when the iron will remain as a grey magnetic powder. (_b._) _Cobalt_ (Co) occurs in combination with arsenic and sulphur, and associated with nickel and iron. It is found occasionally in combination with selenium, and there are a traces of it in meteoric iron. In the metallic state it is of a light, reddish-grey color, rather brittle, and only fusible at a strong white heat; at common temperatures it is unalterable by air or water. At a red heat, it oxidizes slowly and decomposes water; at a white heat it burns with a red flame. Cobalt is soluble in dilute sulphuric or hydrochloric acid by the aid of heat, whereby hydrogen is elimina
PREV.   NEXT  
|<   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123  
124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>   >|  



Top keywords:

cooling

 
addition
 

charcoal

 
appears
 

quantity

 

reduction

 

colorless

 

yellow

 

oxidation

 

lighter


brownish

 

increased

 
combination
 

oxides

 

Cobalt

 

bluish

 
metallic
 

sulphur

 
arsenic
 

purpose


nickel
 

occurs

 

mortar

 

magnetic

 

elimina

 

carbon

 

remain

 

particles

 

powder

 

washing


unalterable

 

temperatures

 

common

 
oxidizes
 
soluble
 

dilute

 

decomposes

 
hydrochloric
 

slowly

 

strong


hydrogen

 

meteoric

 

traces

 

occasionally

 

selenium

 
sulphuric
 

reddish

 
fusible
 

brittle

 

orange