FREE BOOKS

Author's List




PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  
meets with the limitations incident to the experiment, whereupon the same process occurs on another place. To the eye the electrode appears uniformly brilliant, but there are upon it points constantly shifting and wandering around, of a temperature far above the mean, and this materially hastens the process of deterioration. That some such thing occurs, at least when the electrode is at a lower temperature, sufficient experimental evidence can be obtained in the following manner: Exhaust a bulb to a very high degree, so that with a fairly high potential the discharge cannot pass--that is, not a _luminous_ one, for a weak invisible discharge occurs always, in all probability. Now raise slowly and carefully the potential, leaving the primary current on no more than for an instant. At a certain point, two, three, or half a dozen phosphorescent spots will appear on the globe. These places of the glass are evidently more violently bombarded than others, this being due to the unevenly distributed electric density, necessitated, of course, by sharp projections, or, generally speaking, irregularities of the electrode. But the luminous patches are constantly changing in position, which is especially well observable if one manages to produce very few, and this indicates that the configuration of the electrode is rapidly changing. From experiences of this kind I am led to infer that, in order to be most durable, the refractory button in the bulb should be in the form of a sphere with a highly polished surface. Such a small sphere could be manufactured from a diamond or some other crystal, but a better way would be to fuse, by the employment of extreme degrees of temperature, some oxide--as, for instance, zirconia--into a small drop, and then keep it in the bulb at a temperature somewhat below its point of fusion. Interesting and useful results can no doubt be reached in the direction of extreme degrees of heat. How can such high temperatures be arrived at? How are the highest degrees of heat reached in nature? By the impact of stars, by high speeds and collisions. In a collision any rate of heat generation may be attained. In a chemical process we are limited. When oxygen and hydrogen combine, they fall, metaphorically speaking, from a definite height. We cannot go very far with a blast, nor by confining heat in a furnace, but in an exhausted bulb we can concentrate any amount of energy upon a minute button. Leaving practicab
PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  



Top keywords:

electrode

 

temperature

 
process
 

occurs

 

degrees

 

extreme

 

changing

 
sphere
 

reached

 

luminous


button

 

speaking

 

potential

 
discharge
 
constantly
 

manufactured

 

exhausted

 
diamond
 

instance

 

zirconia


concentrate
 

crystal

 
employment
 

furnace

 

confining

 

highly

 

rapidly

 

experiences

 

practicab

 
durable

energy

 

amount

 

polished

 
refractory
 

Leaving

 
minute
 
surface
 

hydrogen

 

impact

 
oxygen

nature

 
combine
 
arrived
 

highest

 

configuration

 

limited

 

collision

 
attained
 
chemical
 

speeds