at the total energy lost must be proportionate to the
product of the frequency and the square of the electric density; but
this law needs experimental confirmation. Assuming the preceding
considerations to be true, then, by rapidly alternating the potential
of a body immersed in an insulating gaseous medium, any amount of
energy may be dissipated into space. Most of that energy then, I
believe, is not dissipated in the form of long ether waves, propagated
to considerable distance, as is thought most generally, but is
consumed--in the case of an insulated sphere, for example--in impact
and collisional losses--that is, heat vibrations--on the surface and
in the vicinity of the sphere. To reduce the dissipation it is
necessary to work with a small electric density--the smaller the
higher the frequency.
But since, on the assumption before made, the loss is diminished with
the square of the density, and since currents of very high frequencies
involve considerable waste when transmitted through conductors, it
follows that, on the whole, it is better to employ one wire than two.
Therefore, if motors, lamps, or devices of any kind are perfected,
capable of being advantageously operated by currents of extremely high
frequency, economical reasons will make it advisable to use only one
wire, especially if the distances are great.
When energy is absorbed in a condenser the same behaves as though its
capacity were increased. Absorption always exists more or less, but
generally it is small and of no consequence as long as the frequencies
are not very great. In using extremely high frequencies, and,
necessarily in such case, also high potentials, the absorption--or,
what is here meant more particularly by this term, the loss of energy
due to the presence of a gaseous medium--is an important factor to be
considered, as the energy absorbed in the air condenser may be any
fraction of the supplied energy. This would seem to make it very
difficult to tell from the measured or computed capacity of an air
condenser its actual capacity or vibration period, especially if the
condenser is of very small surface and is charged to a very high
potential. As many important results are dependent upon the
correctness of the estimation of the vibration period, this subject
demands the most careful scrutiny of other investigators. To reduce
the probable error as much as possible in experiments of the kind
alluded to, it is advisable to use spheres o
|