FREE BOOKS

Author's List




PREV.   NEXT  
|<   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134  
135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>  
those reared in a yellow light[96] were almost but not quite as dark; while those reared in white ironstone crocks and in diffused daylight were very much lighter, being pearl-gray in color. This apparent (for the microscope showed that it was only apparent) absence of color in the last-mentioned specimens was due to tinctumutation. [96] Vide Dewar, "The Physiological Action of Light," _Nature_, p. 433, 1877; quoted also by Semper, _loc. cit. ante_, Notes, p. 423. I do not think that the absence of the slight amount of color in the animals reared under the yellow light was due to the "optic current" of Dewar. The microscope showed that the chromatophores were just as large and just as numerous, and that they contained as much pigment, as those reared under the red light. The apparent absence of color was due to tinctumutation.--W. In most viviparous animals the embryo is developed in almost or absolutely total darkness, yet when it is born it has bright colors. Kerbert has found in the cutis of the embryonic chick, about the fifteenth day, certain pigment-cells. These cells have entirely disappeared by the twenty-third day. It is probable that little, if any, light can reach the chick through the shell and membranes, yet pigment-cells develop and disappear again.[97] [97] Karl Semper, _Animal Life_, p. 422. A butterfly emerges from the cocoon arrayed in all the colors of the rainbow; yet it was developed, while in the _pupa_ state, in total darkness. It is not necessary to mention further instances; we readily see that pigmentation in animals is not necessarily dependent on light. Neither is tinctumutation the result of the direct influence of light on the chromatophores. Light, however, if not the direct, is the indirect cause of this phenomenon. Lister, in 1858, showed that animals with imperfect eyesight were not good tinctumutants, notwithstanding the fact that they had the chromatophoric function. He showed, by his experiments on frogs, that the activity of the chromatophores depended entirely on the healthy condition of the eyes,--that is, so far as the phenomenon of tinctumutation was concerned. So long as the eyes remained intact and connected with the brain by the optic nerve, the light reflected from the surrounding objects exerted a powerful influence on the chromatophores. As soon as the optic nerve was severed, the chromatophores ceased to respond to the influence of light and colo
PREV.   NEXT  
|<   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134  
135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>  



Top keywords:

chromatophores

 

reared

 

tinctumutation

 

animals

 

showed

 

apparent

 

absence

 

pigment

 

influence

 

colors


Semper

 

developed

 

phenomenon

 

direct

 

yellow

 

darkness

 

microscope

 

result

 
dependent
 

Neither


emerges

 
cocoon
 

arrayed

 

butterfly

 

Animal

 

rainbow

 

readily

 

pigmentation

 

instances

 
mention

necessarily
 

function

 

remained

 

intact

 
connected
 
concerned
 
reflected
 

surrounding

 
severed
 

ceased


respond

 

objects

 

exerted

 

powerful

 

condition

 

healthy

 

eyesight

 

tinctumutants

 

notwithstanding

 

imperfect