FREE BOOKS

Author's List




PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>   >|  
light as if it were as large as the lens O B. The rays, however, are convergent, and the point difficult to [Page 44] find. Hence there is placed at R a concave lens, passing through which the rays emerge in parallel lines, and are received by the eye. Opera-glasses are made upon precisely this principle to-day, because they can be made conveniently short. [Illustration: Fig. 13.--Refracting Telescope.] If, instead of a concave lens at R, converting the converging rays into parallel ones, we place a convex or magnifying lens, the minute image is enlarged as much as an object seems diminished when the telescope is reversed. This is the grand principle of the refracting telescope. Difficulties innumerable arise as we attempt to enlarge the instruments. These have been overcome, one after another, until it is now felt that the best modern telescope, with an object lens of twenty-six inches, has fully reached the limit of optical power. _The Reflecting Telescope_. This is the only kind of instrument differing radically from the refracting one already described. It receives the light in a concave mirror, M (Fig. 14), which reflects it to the focus F, producing the same result as the lens of the refracting telescope. Here a mirror may be placed obliquely, reflecting the image at right angles to the eye, outside the tube, in which case it is called the Newtonian telescope; or a mirror at R may be placed perpendicularly, and send the rays through [Page 45] an opening in the mirror at M. This form is called the Gregorian telescope. Or the mirror M may be slightly inclined to the coming rays, so as to bring the point F entirely outside the tube, in which case it is called the Herschelian telescope. In either case the image may be magnified, as in the refracting telescope. [Illustration: Fig. 14.--Reflecting Telescope.] Reflecting telescopes are made of all sizes, up to the Cyclopean eye of the one constructed by Lord Rosse, which is six feet in diameter. The form of instrument to be preferred depends on the use to which it is to be put. The loss of light in passing through glass lenses is about two-tenths. The loss by reflection is often one-half. In view of this peculiarity and many others, it is held that a twenty-six-inch refractor is fully equal to any six-foot reflector. The mounting of large telescopes demands the highest engineering ability. The whole instrument, with its vast weight of a twenty-six-inch
PREV.   NEXT  
|<   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53  
54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   >>   >|  



Top keywords:

telescope

 

mirror

 
refracting
 

Telescope

 

Reflecting

 

twenty

 

called

 
instrument
 

concave

 

telescopes


object

 

passing

 

parallel

 
principle
 
Illustration
 

Herschelian

 

coming

 
magnified
 

Cyclopean

 

constructed


inclined
 

Gregorian

 
angles
 

difficult

 

convergent

 

reflecting

 

obliquely

 

Newtonian

 

opening

 
perpendicularly

slightly

 

reflector

 

refractor

 
mounting
 

demands

 
weight
 
ability
 

highest

 

engineering

 
peculiarity

depends

 
result
 
diameter
 

preferred

 

lenses

 

reflection

 

tenths

 
reversed
 
precisely
 

diminished