FREE BOOKS

Author's List




PREV.   NEXT  
|<   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85  
86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   >>   >|  
he Sandwich Islands; and in twenty-four, toward Washington again, not because it has changed the plane of its vibration, but because the earth has whirled beneath it, and the torsion of the wire has not been sufficient to compel the plane of the original direction to change with the turning of the earth. The law of inertia keeps it moving in the same direction. The same experimental proof of revolution is shown in a proportional degree at any point between the pole and the equator. But the watchers on the Acropolis do not get turned over so as to see the moon at the same time every night. [Page 110] We turn down our eastern horizon, but we do not find fair Luna at the same moment we did the night before. We are obliged to roll on for some thirty to fifty minutes longer before we find the moon. It must be going in the same direction, and it takes us longer to get round to it than if if it were always in the same spot; so we notice a star near the moon one night--it is 13 deg. west of the moon the next night. The moon is going around the earth from west to east, and if it goes 13 deg. in one day, it will take a little more than twenty-seven days to go the entire circle of 360 deg.. [Illustration: Fig. 42.--Showing the Sun's Movement among the Stars.] [Page 111] In our outlook we soon observe that we do not by our revolution come to see the same stars rise at the same hour every night. Orion and the Pleiades, our familiar friends in the winter heavens, are gone from the summer sky. Have they fled, or are we turned from them? This is easily understood from Fig. 42. When the observer on the earth at A looks into the midnight sky he sees the stars at E; but as the earth passes on to B, he sees those stars at E three minutes sooner every night; and at midnight the stars at F are over his head. Thus in a year, by going around the sun, we have every star of the celestial dome in our midnight sky. We see also how the sun appears among the successive constellations. When we are at A, we see the sun among the stars at G; but as we move toward B, the sun appears to move toward H. If we had observed the sun rise on the 20th of August, 1876, we should have seen it rise a little before Regulus, and a little south of it, in such a relation as circle 1 is to the star in Fig. 43. By sunset the earth had moved enough to make the sun appear to be at circle 2, and by the next morning at circle 3, at which time Regulus would rise be
PREV.   NEXT  
|<   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85  
86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   >>   >|  



Top keywords:

circle

 

direction

 

midnight

 
Regulus
 
appears
 

longer

 

minutes

 
twenty
 

revolution

 

turned


observer

 

vibration

 

changed

 
sooner
 

whirled

 

passes

 

winter

 
heavens
 

friends

 
familiar

Pleiades

 
summer
 

beneath

 

easily

 
understood
 

celestial

 

sunset

 

relation

 

Sandwich

 

morning


successive

 

Washington

 

torsion

 

constellations

 
August
 

observed

 
Islands
 
degree
 
proportional
 

thirty


notice

 

eastern

 

horizon

 
watchers
 

Acropolis

 

equator

 

obliged

 
moment
 

Movement

 
Showing