FREE BOOKS

Author's List




PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  
ing balance, and we have a group of particles constituting an elastic solid; exactly fulfilling the mathematical ideal worked out by Navier, Poisson, and Cauchy, and many other mathematicians, who, following their example, have endeavored to found a theory of the elasticity of solids on mutual attraction and repulsion between a group of material particles. All that can possibly be done by this theory, with its assumption of forces acting according to any assumed law of relation to distance, is done by the gyrostatic system. But the gyrostatic system does, besides, what the system of naturally acting material particles cannot do--it constitutes an elastic solid which can have the Faraday magneto-optic rotation of the plane of polarization of light; supposing the application of our solid to be a model of the luminiferous ether for illustrating the undulatory theory of light. The gyrostatic model spring balance is arranged to have zero moment of momentum as a whole, and therefore to contribute nothing to the Faraday rotation; with this arrangement the model illustrates the luminiferous ether in a field unaffected by magnetic force. But now let there be a different rotational velocity imparted to the jointed square round the axis of the two projecting hooked rods, such as to give a resultant moment of momentum round any given line through the center of inertia of the system; and let pairs of the hooked rods in the model thus altered, which is no longer a model of a mere spring balance, be applied as connections between millions of pairs of particles as before, with the lines of resultant moment of momentum all similarly directed. We now have a model elastic solid which will have the property that the direction of vibration in waves of rectilinear vibrations propagated through it shall turn round the line of propagation of the waves, just as Faraday's observation proves to be done by the line of vibration of light in a dense medium between the poles of a powerful magnet. The case of wave front perpendicular to the lines of resultant moment of momentum (that is to say, the direction of propagation being parallel to these lines) corresponds, in our mechanical model, to the case of light traveling in the direction of the lines of force in a magnetic field. In these illustrations and models we have different portions of ideal rigid matter acting upon one another, by normal pressure at mathematical points of contact--of course no
PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   >>  



Top keywords:

momentum

 

system

 

moment

 
particles
 
acting
 

elastic

 

direction

 

resultant

 
theory
 

Faraday


gyrostatic
 

balance

 

mathematical

 

luminiferous

 

spring

 

vibration

 

propagation

 

rotation

 
magnetic
 

material


hooked

 

inertia

 

center

 

applied

 

worked

 

property

 

millions

 

longer

 

similarly

 

connections


directed

 

altered

 
models
 

portions

 

illustrations

 

corresponds

 

mechanical

 
traveling
 
matter
 

points


contact

 
pressure
 

normal

 

parallel

 
observation
 
proves
 

vibrations

 

propagated

 

medium

 

perpendicular